Pulmonary arterial hypertension: Cellular and molecular changes in the lung

Bradley A Maron


The range of cell types identified in the pathogenesis of pulmonary arterial hypertension (PAH) has expanded substantially since the first pathological descriptions of this disease. This, in
turn, has provided needed clarity on the gamut of molecular mechanisms that regulate vascular remodeling and promote characteristic cardiopulmonary hemodynamic changes that define PAH clinically. Insight derived from these scientific advances suggest that the PAH arteriopathy is due to the convergence of numerous molecular mechanisms driving cornerstone endophenotypes, such as plexigenic, hypertrophic, and fibrotic histopathological changes. Interestingly, while
some endophenotypes are observed commonly in multiple cell types, such as dysregulated metabolism, other events such as endothelial-mesenchymal transition are cell type-specific. Integrating data from classical PAH vascular cell types with fresh information in pericytes, adventitial fibroblasts, and other PAH contributors recognized more recently has enriched the field with deeper understanding on the molecular basis of this disease. This added complexity, however, also serves as the basis for utilizing novel analytical strategies that emphasize functional signaling pathways when extracting information from big datasets. With these concepts as the backdrop, the current work offers a concise summary of cellular and molecular changes in the lung that drive PAH and may, thus, be important for discovering novel therapeutic targets or applications to clarify PAH onset and disease trajectory.

Full Text:


DOI: http://dx.doi.org/10.21542/gcsp.2020.3


  • There are currently no refbacks.

Copyright (c) 2020 Bradley A Maron

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.