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ABSTRACT

Computations of fractional flow reserve, based on CT coronary angiography and computational
fluid dynamics (CT-based FFR) to assess the severity of coronary artery stenosis, was introduced
around a decade ago and is now one of the most successful applications of computational fluid
dynamic modelling in clinical practice. Although the mathematical modelling framework behind
this approach and the clinical operational model vary, its clinical efficacy has been demonstrated
well in general. In this review, technical elements behind CT-based FFR computation are
summarised with some key assumptions and challenges. Examples of these challenges include
the complexity of the model (such as blood viscosity and vessel wall compliance modelling),
whose impact has been debated in the research. Efforts made to address the practical challenge
of processing time are also reviewed. Then, further application areas—myocardial bridge, renal
stenosis and lower limb stenosis—are discussed along with specific challenges expected in these
areas.
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1. BACKGROUND

Computationally-derived fractional flow reserve (FFR) is one of the most promising
non-invasive tools ready for expanded use in clinical cardiology. The use of FFR

during coronary angiography has been successful in improving patient selection for
revascularization®. However, this method is invasive and cannot be repeated readily
with follow-up of patients with coronary disease. This highlights the need for developing
reliable non-invasive methods for measuring FFR. We here review the development and
potential applications of CT-based measurements of FFR (CT-FFR).

2. TECHNOLOGY AND EFFICACY

The key technology behind CT-FFR is patient-specific modelling of blood flow?3. This
essentially requires three key elements: (1) anatomical model of the vasculature, (2)
mathematical equations to describe blood flow (including required parameters such
as blood viscosity), and (3) boundary conditions, e.g., reference flow and pressure
conditions. Each of these is described below.

2.1 Anatomical model of the vasculature

In the process of CT-FFR analysis, the geometry of a coronary vascular tree is
reconstructed in 3D, from CT coronary angiograms (CTCA). An example of a reconstruction
is shown in Figure 1, showing the aortic root, left and right coronary vascular trees,
including a stenosis.

A common image segmentation process involves thresholding of the CT image
intensity to allow for the lumen border to be delineated, and a 3D vascular (lumen) model
to be obtained. This process is limited by the spatial resolution of CTCA, which is typically
around o.5 mm (both in plane, i.e., pixel size, and slice interval). Considering a standard
coronary artery diameter of 3—4 mm, typical CTCA resolves the vessel diameter in
6—8 pixels and most of the CT-based coronary tree models therefore only include the 1st
generation of coronary artery branches from the 3 main coronary vessels.

Because drastic improvement of CTCA resolution is not expected, at least in the
immediate future#, efforts have been devoted to improving image processing algorithms,
such as the use of resolution enhancement and machine learning.
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Figure 1. Typical coronary tree structure reconstructed from CT images. Left: direct reconstruction
from raw CT images™, right: the centreline of an arterial tree reconstructed using a machine-learning
enhancement®.
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Min et al. demonstrated finer details of coronary tree structure segmented using their
sub-voxel enhancement approach (Figure 1°). Whilst the application of machine-learning
techniques to cardiac CT has been explored®, quantitative assessment of its impact,
especially on CT-FFR, has not been clearly described. However, overall, the importance
of anatomical model in patient-specific CFD is well documented from the earliest era of
blood flow simulations” and also in terms of its impact on FFR computation®.

Anatomical models of coronary vessels can be reconstructed from images acquired
with other modalities. Cardiac magnetic resonance (CMR) imaging is an ideal modality
as it requires neither radiation, nor nephrotoxic contrast agent, but the spatial resolution
(~1 mm/voxel) is less than CTCA?.

On the other hand, X-ray angiograms have been utilised in computational prediction
of FFR, e.g., in vFFR™ and QFR™ approaches. Whilst this approach has been shown
to be effective in reliably predicting FFR, it requires the use of an invasive procedure.
Information on this approach has been reviewed elsewhere??.

2.2 Mathematical equations to describe blood flow

Typically, equations of fluid motion—the incompressible Navier—Stokes equations—are
solved on computers as the basis of computational fluid dynamics (CFD) analysis. Here,
we describe only some key assumptions involved, while further information on the model
details can be found in the literature®3.

The coronary arterial network is a three-dimensional (3D) structure and many
CT-based FFR computations, including HeartFlow FFRcr, are conducted in 3D, which is
based on solving the full 3D version of the above-mentioned mathematical equations.
This normally requires hours of computational time, in addition to the pre- and post-
processing of the data (computational time is discussed in more details later in
Section 3). At the same time, attempts have been made to approximate the computation
using 1-dimensional model of blood flow, in which a 1D version of the Navier-Stokes
equations are solved. This approach—often called a reduced-order model—is less
time-consuming and is adopted in Siemens cFFR and Toshiba CT-FFR'>® platforms.
Comparisons of 3D and 1D FFR computation have demonstrated similarity of the results
between those two approaches, and also for a complex aortic flow®. Thus a reduced
order model may be chosen, depending on the required model output.

It is widely accepted that the density and viscosity of blood can be assumed to be
constant across space and time. The density of blood is shown to be homogeneous
across individuals, 1050 kg/m?3 (95% Cl [1048—1054] kg/m3)*. The viscosity of blood is
known to be shear-thinning which may affect the blood flow pattern and eventually FFR.
A number of non-Newtonian blood viscosity models, such as the Quemada model, allow
for the implementation of shear-thinning characteristics and adjustment of the viscosity
vs. shear rate relationship, also based on patient’s haematocrit2°.

Inclusion of other blood properties, such as blood protein, are less common and only
a limited number of models are readily available (e.g., Walburn-Schneck model®?). At
the same time, a simple estimation shows that the mean shear rate in coronary arteries
(1 ml/s of blood flowing through a 3 mm diameter vessel) is approximately 189 s—*.
Experimental data on human blood viscosity shows a plateau of viscosity in shear rate
»100 571, which indicates that the assumption of constant viscosity is acceptable®?,
especially around a stenosis, where shear rate in the blood flow is expected to be even
higher.

Another typical assumption is that the vessel wall is approximated as rigid. By this,
the model ignores two potentially contributing factors: wall compliance and cardiac-
induced wall motion. The former was examined by comparing computational results
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from 3D simulations assuming rigid vessel wall, and from 1D simulations incorporating
wall compliance. Their results demonstrated a difference of 0.00 + 0.03 between FFRs
based on 3D rigid wall and 1D compliant wall models. Although this should account

for the difference between 3D and 1D simulations, it suggests that the impact of wall
compliance is not significant. Additionally, FFR is commonly taken in diastole when

FFR becomes the maximum FFR within a cardiac cycle®3. Here, the wall deformation

is expected to be smaller due to lower diastolic pressure hence the impact of wall
compliance on FFR is likely to be even smaller.

The impact of cardiac-induced motion is an open question, with examinations
focusing more on wall shear stress?4, rather than pressure or FFR. The dynamic variation
of vessel wall centreline curvature could alter the FFR dynamically, and this is an
interesting topic to be explored, especially in some specific pathologies such as
myocardial bridge, which is discussed later in this review.

2.3 Boundary conditions

To reliably predict the blood pressure in a patient’s coronary arterial tree, it is important
to set the flow and pressure conditions to represent the patient. It has been shown that
if the boundary conditions are well defined, ideally with intravascular measurement of
pressure and flow velocity, the computationally predicted FFR in a short segment of
blood vessel closely agrees with the invasively measured FFR?>. However, in CT-based
FFR computations, such data is not likely to exist because of the non-invasive nature

of the process, and boundary conditions need to be estimated, making the best use of
limited information about patient’s flow and pressure.

Taylor et al.> employed lumped parameter (electric circuit) model of the heart and the
peripheral vasculature to address the challenge of boundary conditions, both inflow from
the heart and outflow to downstream coronary microvasculature. They adjust the lumped
parameter model such that the mean aortic pressure matches the patient’s own brachial
pressure, and the aortic and coronary outflow match those estimated from allometric
scaling law. A similar adaptive modelling approach was taken by Kruk et al., by coupling
a simpler model of coronary and systemic circulation that is tuned based on patient-
specific blood flow and pressure from clinical recording™42°.

Ko et al. took a different approach to estimate blood pressure based on deformation of
blood vessel, estimated from 4D CT image sets, and vessel stiffness, which subsequently
allows estimation of blood flow in the aorta and coronary tree’>. At the same time, when
4D CT image sets are available, aortic inflow can be estimated by taking the difference of
the left ventricular cavity volumes between end systolic and end diastolic phases, as the
stroke volume®3.

In relation to the outflow condition of the coronary tree, one of the debated topics is
the model of hyperaemic condition. All of the above-mentioned works assume constantly
increased flow under hyperaemia, either in terms of peripheral resistance reduction to
24—30% of the rest, or flow increase of 4.0—4.5 fold?”.

It has also been assumed that the response to adenosine is the same across patients
and across different coronary territories. However, it has been reported that the drug
(dipyridamole)-induced vasodilatory response is not homogeneous even among normal
subjects without cardiac disease?®. Our study on the impact of outflow conditions
indicated that it could considerably affect the predicted FFR more in anatomically severe
stenosis, by altering the flow distribution in different coronary vessels, and possibly alter
the FFR across the diagnostic threshold®. Outflow boundary condition could therefore
be one of the areas that could improve CT-based FFR prediction, potentially with new
sophisticated models of myocardial blood perfusion?.
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Figure 2. ROC curves of various CT-based FFR computation methods. Noorgaard et al.3° (HeartFlow
FFRct, left), Kruk et al.* (Siemens cFFR noted as CTA FFR, middle) and Ko et al.’> (Toshiba CT-FFR, right).
The AUC of CTA FFR in the mid panel is 0.835.

2.4 Clinical efficacy of the method

The efficacy of CT-based FFR computation is well documented and some representative
ROC curve analysis results are shown in Figure 2. Since our aim is to focus more on

the technical aspect, we only briefly describe a typical result from a number of clinical
trials. In Norgaard et al., the per-patient sensitivity and specificity of HeartFlow FFR¢y

to identify myocardial ischemia, were reported to be 86% and 79%, respectively, which
were superior to coronary CT angiogram (CTCA) alone (sensitivity and specificity 94% and
34%, respectively)3°. This is also reflected in the difference in area under the curve (AUC)
which was 0.90 for FFR¢t and 0.81 for CTCA, based on invasive FFR as the gold standard.
Along with the number of other evidences demonstrating its efficacy, and due to its
non-invasive nature, HeartFlow FFRcr gained its current position in clinical practice, for
example in the UK, based on a recommendation in UK NICE guidelines which compared
HeartFlow FFR¢r to other CCTA and MRI based non-invasive approaches3.

The efficacy of other CT-based FFR computation approaches has been demonstrated
more in a research context. Diagnostic accuracy of Siemence cFFR methodology per
patient was documented as 75.6% sensitivity, 71.4% specificity and AUC 0.835 in a cohort
of 9o patients™.

The accuracy of Toshiba CT-FFR was examined in a cohort of 30 patients and shown
to have 77.8% sensitivity, 86.8% specificity and AUC 0.88 after calibration of FFR cut-off
value to improve the sensitivity and specificity®>. These diagnostic accuracies are also
shown to be superior to other non-invasive measures, especially CTCA alone (Figure 2).
Though these technologies would require further evaluation in a larger group of patients,
in principle, CT-based FFR computation has been shown to have high diagnostic values in
different forms of implementation.

2.5 Additional advantage of computational approach

Computation of FFR produces a rich set of information. The direct output of the CFD
process is blood pressure and flow velocity at any point in the region of interest. FFR is
derived from the blood pressure, and the obvious advantage of computationally-derived
FFR is the ease of repeated and/or pullback “measurements” which can be particularly
effective in assessing serial legions32.

Derivation of other haemodynamic parameters, such as wall shear stress (WSS)—
sometimes called endothelial shear stress—is another advantage. WSS and its deriva-
tions have been explored as a marker to predict progression of atherosclerotic disease33,
and WSS-based parameters have been shown to be effective markers to predict disease
progression in patients with borderline negative FFR34. There are also some new
parameters proposed such as axial plaque stress>> and a combination of various
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computationally-derived parameters could reinforce FFR-only assessment of the lesion,
by taking the full advantage of the rich computational data output.

Finally, it should be mentioned that computational simulation can be used to predict
post-PCl flow characteristics and FFR, as demonstrated by Modi et al.3°. In their study of
24 vessels with serial stenoses, post-PCl prediction of FFR, using their new and simplified
mathematical model for a shorter turnaround time, was shown to match invasively
measured post-PCl FFR better (7% error with FFR difference of 0.01 & 0.05). This proof-
of-concept study was followed up in their Benefits of Obtaining information or planning
With noninvasive FFR ¢1 prior to Invasive Evaluation (BOWIE) study and in their latest
presentation, they reported that the tool suggested a change of diagnostic plan in 45%
of their patient cohort3”. As what-if analysis is one of the strengths of computational
modelling, a wider use of CT-based FFR computation in this fashion is expected in the
future, with more rigorous validations.

3. CHALLENGES AND NEW APPLICATION AREAS

3.1 Analysis platform and speed

In the previous section, we described that CT-based FFR computation has successfully
been applied in various clinical scenarios, with some technical challenges associated
with assumptions in the model. More practical questions relate to where and who does
the analysis, and the speed of computation.

The HeartFlow FFR¢t analysis is conducted at a US-based data processing centre and
the turnaround time of the service is noted as 24 h in a clinical trial description from
201238 and 48 h in the NICE guideline3'. The time includes data transfer, data processing
and quality assurance, of which the actual processing time is reported as 1—4 h per
case3°. Whilst this approach offers a rigorous quality control, which is typically time
consuming, even with trained data processing technicians, other groups take a different
approach. Both Kruk et al.** and Ko et al.®> (works associated with Siemens cFFR and
Toshiba CT-FFR, respectively) opted for computations to be done on a local desktop
computer. Localisation of analysis is quicker and may be more clinically viable in terms
of assessment time. At the same time, quality of the analysis output may depend on
the skill of the local operator and could introduce uncertainty and/or variability in the
analysis.

The reduced order (1D) approaches adopted in Siemens cFFR and Toshiba CT-FFR,
introduced earlier in Section 2, produces computational results more quickly. The former
is reported to complete the whole process in 23.9 + 11.2 min3? and the process of the
latter is completed in 27.07 & 754 min®, both on standard desktop workstation without
significantly sacrificing accuracy, as shown in Figure 2. However, it should be noted that
the Siemens and Toshiba methods has only been validated in relatively small cohorts
(n =90 and 30, respectively). Another study directly comparing 3D simulation and 1D
reduced-order simulation of flow in the coronary arteries of 20 patients’ reported mean
execution time of 27.2 h (3D) vs 0.09 h (1D), with extremely good agreement in the FFR
between the two methods (difference between FFR;p and FFR,p = 0.00 + 0.03)".

To accelerate the process further, the use of machine learning (ML) has been explored,
as seen in many other applications in biomedicine. Siemens cFFR was developed further
in this direction, and its ML version appears the most in the literature44* as well as in a
clinical trial database#?. The ML-predicted FFR was produced in approximately 8o times
shorter computational time (196.3 4= 78.5 s for CFD and 2.4 + 0.44 s for the ML, both on
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a standard desktop PC) with FFR values and diagnostic accuracies similar to the reduced-
order (1D) CFD-based FFR4°. Its efficacy has also been shown in terms of its capability to
stratify patients with MACE in a 2-year window**.

The drastic acceleration of the computational time by ML is deemed more
beneficial if applied to more time-consuming 3D simulations, whose output can be more
informative as described earlier. However, the number of attempts made on predicting
3D-simulation-based FFR using ML is limited, although prediction of 3D WSS can be
found“3. The time-consuming nature to generate sufficient training dataset with 3D
simulation is a potential reason behind that, although this could be a worthy investment
considering the benefit of obtaining FFR (and relevant) data equivalent to 3D simulation
output in a very short time.

A more extreme form of ML-based prediction of FFR is to train a ML model directly
using pairs of raw CT data and invasive FFR. Kumamaru et al. attempted this using
pairs of those data for 131 patients, of which 20 were in the validation data set, and
the diagnostic accuracies were reported to be 69.2% sensitivity, 66.2% specificity and
AUC 0.78, using invasive FFR as the reference“4. The diagnostic indices are lower than
for the previously mentioned approaches, which could be improved with an improved
intermediate step (currently, they use the morphology of stenosis segmented from CTCA).

Considering the demand of analysis speed in clinical environments, the use of reduced
order model and/or ML may become more mainstream than 3D computation. At the
same time, careful consideration is required in selecting the acceleration strategy,
depending on the available input data and its quality (control), and the required output
information.

3.2 Potential new application areas
Stenosis can be found in many different parts of the cardiovascular system. And blood
flow computations using 3D patient-specific vascular models have been applied to a
vast variety of anatomical locations in human cardiovascular systems. However, the
application of CT-based FFR calculation is still limited to the assessment of coronary
atherosclerotic narrowing. This is likely because the evidence for the efficacy of FFR, or
any haemodynamic parameters, in assessing other pathologies is not as strong as the
efficacy of FFR in guiding treatment for coronary stenosis, which has been demonstrated
by many, including the landmark DEFER and FAME trials™4>. The beauty of CT-based FFR
computation is the fact that it simply replaces a well-established clinical indicator with a
non-invasive alternative.

We discuss potential future applications of CT-based FFR based on the recent
exploration of invasive FFR application, along with expected technical challenges specific
to the computational approach.

3.2.1 Myocardial bridge (MB)

The application of FFR to assess MB was first attempted by Escaned et al. in 200346, With
the stress induced by dobutamine, they assessed haemodynamic relevance of MB in 12
patients, using diastolic FFR, with FFR = 0.76 as the cut-off value that was proposed as
the cut-off for static stenoses in diastole®.

Escaned et al. reported that diastolic FFR is significantly lower than cycle averaged
FFR, and that diastolic FFR under dobutamine stress is the best indicator for the
haemodynamic significance of MB. They demonstrated, using intravascular pressure
measurement, that the systolic pressure difference across the MB segment is reversed,
i.e., distal blood pressure is higher than the proximal blood pressure (Figure 3). This is
due to dobutamine-enhanced systolic compression of myocardium. Subsequently, a
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Figure 3. X-ray angiogram showing coronary artery morphology change under dobutamine
stress (left) and intravascular pressure measurement across MB section under dobutamine and
adenosine stress (right), reported by Escaned et al.“®. Pa, aortic pressure; Pd, intracoronary pressure
distal to the MB.

larger pressure difference across the MB segment was observed in diastole compared
to the rest, which lead to the conclusion that diastolic FFR under dobutamine stress is
the most severe measure, hence the most adequate way, to assess the haemodynamic
severity of MB. The effect of dobutamine infusion on FFR in MB was later confirmed by
Hakeem et al.,4” though with a higher dose than Escaned et al., and in a smaller number
of patients.

In principle, this assessment can be replicated using CT-based FFR approach. An
obvious challenge is to capture the dynamically changing vessel morphology with CT.
Since the typical number of time instances in 4D Cardiac CT is 10 and the instances are
at equal time interval (which could go up to 20-time instances®), characteristic time
points of myocardial contraction may be missed. However, if diastolic FFR is focused as
suggested by Escaned et al,, this issue may not impact the FFR estimation significantly.
Diastolic measurement would also alleviate the concern of motion artifact in cardiac 4D
CT.

The real challenge in modelling the flow in MB patients would be to reflect the
diastolic flow increase, likely to be due to the systolic compression, in addition to the
effect of adenosine. This is the key to the elevated pressure difference across the MB
and plays a significant role, although such information would not be available from
non-invasive measurement and an additional model, mathematical and/or empirical
(statistical), would be required.

More recently, the use of instantaneous wave-free ratio (iFR) was suggested for
assessing severity of MB by Tarantini et al.4°. This could also be derived computationally,
using the same computational approach with CT-based FFR computation but without
considering the effect of adenosine. However, Tarantini et al. indicated that further
studies are still needed to confirm the clinical value of iFR, which is the same challenge
with FFR.

Assessment of MB severity using CT-based FFR has not been described yet, although
the technology has been used to predict atherosclerotic plaque formation in MB patients
using ML-accelerated version of Siemens cFFR technique>©. It appears that MB is an
uncharted territory to apply CT-based FFR computations.

3.2.2 Renal artery stenosis
Variants of FFR have been used to assess the severity of renal artery stenosis as
summarised in the review by van Brussel et al.>*. Their systematic review included 6
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studies examining the efficacy of hyperaemic haemodynamic indices in guiding the
therapeutic strategy on renal artery stenosis (the number of patients ranged from 17-62).

The review has shown that the use of renal FFR (rFFR) is promising in terms of
differentiating responders from non-responders of percutaneous transmural renal
angioplasty with stent placement (PTRAS). However, the actual threshold rFFR value is
yet to be established. Additionally, integration of the microvascular response (renal flow
reserve: RFR) with rFFR was discussed, similar to the combination of FFR and coronary
flow reserve (CFR). However, that is still conceptual and only limited data is available on
difference of hyperaemic response in renal microvasculature due to co-morbities (e.g.,
diabetes>?).

Since the renal arteries are relatively large (diameter ~5 mm) in comparison to the
resolution of CT (~0.5 mm/pixel) and are static, they are expected to be well depicted
in CT images. This allows reconstruction of 3D arterial model as shown in Figure 4 (left
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Figure 4. Example result of computationally predicted blood flow and Pd/Pa in renal artery
stenoses®4. Three-dimensional model and flow pattern example (left) and a comparison between
measured and computed Pd/Pa (right).
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Figure 5. CT-based FFR computation of aortoiliac stenosis (left)>® and collateral vessel network
around common femoral artery stenoses (right)®2,
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panel) and makes this application relatively straightforward in terms of applicability of
CFD.

The application of computational FFR, sometimes referred as Pd/Pa in this
context, was attempted almost 2 decades ago based on CFD and contrast-enhanced
MR images>3, which is even less invasive compared to the CT-based techniques. More
recent attempts using CT images have successfully demonstrated a good quantitative
agreement of Pd/Pa values between computational prediction and invasive
measurement (Figure 4)°4.

One challenge expected here is the definition of boundary conditions. In the MR-based
study, phase-contrast MR was utilised to obtain inflow velocity from the aorta to the renal
arteries®3, which is a common sequence and straightforward to use. CT-based analysis
requires an additional measurement or model to obtain inflow condition. A 1-dimensional
model of systemic circulation was used by Mandaltsi et al.>.

Additionally, although a model of outflow condition would be needed irrespective of
the imaging modality, that would be more straightforward compared to the coronary
system since the stenosis is expected primarily in the main renal artery that feeds the
entire kidney, i.e., heterogeneity of ischaemic region is less likely in renal vasculature
than coronaries. In the case of a renal artery stenosis, a simple resistance model could
be used.

Furthermore, the computational approach has been utilised in the context of
predicting the efficacy of stenosis removal®>. All the previous works mentioned above,
both on clinical efficacy and computational prediction of Pd/Pa, indicate that studies are
expected, in the near future, on application of CT-based FFR calculation to renal artery
stenosis, including demonstration of its clinical significance.

3.2.3 Lower-limb ischaemia (peripheral artery disease)

Assessment of lower limb (aortoiliac) stenosis severity using FFR (-equivalent parameter)
is a newer application area than MB and renal artery stenosis. The first attempt was made
by Banerjee, et al. investigating an association between invasively-measured pressure
difference (gradient) across a lesion and walking impairment®®. They found that using a
threshold value of 11 mmHg, the pressure difference can predict walking impairment with
71% sensitivity and 100% specificity.

The efficacy of FFR in assessing below the knee stenotic and ischaemic lesions are
also explored by Ruzsa et al.7, in which a significant correlation between FFR and
transcutaneous O, pressure, measured by a laser Doppler system, was demonstrated.

A more detailed summary can be found in a review by Mangi et al.>8, but it appears that
the use of FFR in assessing lower limb stenosis is still being established. An additional
question in lower limb ischaemia may be the ease of access to the diseased site
compared to the prior examples, i.e., coronary and renal arteries, and the efficacy and
practicality of computationally-derived indicators will be scrutinised against direct (and
non-invasive) measurements such as ultrasound.

Similar to renal artery examples, application of CT-based FFR computation to lower-
limb arteries is expected to be relatively straightforward because the diameter of major
lower-limb arteries is large enough (>5 mm) in comparison to typical spatial resolution of
CT (~o.5 mm/pixel) and no major vessel motions (e.g., cardiac- or respiratory-induced) is
expected.

Ward et al. computed CT-based FFR in 7 patients with aortoiliac obstructive disease
(Figure 5 left) and showed that the agreement of FFR between the computational
predictions and in vivo measurement was excellent. The average difference of FFR is
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0.136 and the area under the curve is 1.0, taking in vivo measurement based diagnostic
as the gold standard>®. The high level of agreement was achieved even though they
applied uniform flow of 8.0 L/min, including the hyperaemic flow increase, across the
patients and computations under steady flow assumption.

These promising results suggests that the application of CT-based FFR could be
explored more, but there is no large-scale study or clinical trial on the horizon. The CFD-
based studies so far concentrate more on predicting restenosis (mechanobiological
adaptation) by quantifying haemodynamic shear stress acting on the endothelium®®,
including the effect of leg flexion®®.

One of the potential reasons behind that is the development of collateral vessel
network that is often observed in aortoiliac/femoral arterial obstruction®? (Figure 5 right).
The presence of collateral vessel alleviates the high pressure drop across a stenosed
lesion, but to capture the small collateral arteries in CT images is a challenge. However,
overall, lower limb ischaemic disease is a promising application of CT-based FFR technol-
ogy because this routine clinical diagnosis involves many (non-invasive) haemodynamic
measurements that can be used for boundary conditions of CFD modelling®3, among
which duplex ultrasound and extremity segmental pressures are particularly useful
source of information.

SUMMARY

We briefly summarised the current technologies used in CT-based FFR computations.
Despite some assumptions, the efficacy of this approach has been well demonstrated,
which placed it as part of routine clinical practice in many countries. Further development
is expected in terms of its analysis speed, and improved accuracy by integrating

with some additional parameters that could also be derived from the same set of
computational results. The CT-based FFR computations also have the potential to be
applied in assessing the functional severity of stenosis in other parts of the
cardiovascular system as far as its technical characteristics are concerned. However,
clearer clinical evidences showing the efficacy of FFR in those applications are needed,
which is clearly established in the case of coronary FFR.
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