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ABSTRACT
The microcirculation comprising of arterioles, capillaries and post-capillary venules is the terminal
vascular network of the systemic circulation. Microvascular homeostasis, comprising of a balance
between vasoconstriction, vasodilation and endothelial permeability in healthy states, regulates
tissue perfusion. In severe infections, systemic inflammation occurs irrespective of the infecting
microorganism(s), resulting in microcirculatory dysregulation and dysfunction, which impairs
tissue perfusion and often precedes end-organ failure. The common hallmarks of microvascular
dysfunction in both septic shock and dengue shock, are endothelial cell activation, glycocalyx
degradation and plasma leak through a disrupted endothelial barrier. Microvascular tone is also
impaired by a reduced bioavailability of nitric oxide. In vitro and in vivo studies have however
demonstrated that the nature and extent of microvascular dysfunction as well as responses to
volume expansion resuscitation differ in these two clinical syndromes. This review compares and
contrasts the pathophysiology of microcirculatory dysfunction in septic versus dengue shock and
the attendant effects of fluid administration during resuscitation.
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INTRODUCTION
The microcirculation is the terminal vascular network of the systemic circulation, whose
primary function is to distribute oxygen to, and remove metabolic by-products from
living cells. In health, tissue perfusion is regulated by control of microvascular tone and
endothelial permeability. In states of shock, however, there is a mismatch between
demand for, and delivery or utilisation of oxygen in the tissues1.

The microcirculation comprises arterioles, capillaries and post-capillary venules.
The primary component of micro-vessels are endothelial cells; arterioles are also
surrounded by vascular smooth muscle cells. Endothelial cells maintain the selective
vascular barrier by means of dynamic regulation of inter-endothelial adherens and
tight junction integrity, as well as control of cytoskeletal contraction by reorganisation
of filamentous actin2. The luminal surface of vascular endothelium is lined with a fine
hair-like structure, the glycocalyx, which forms a physical and electrostatic barrier that
is important for vascular homeostasis. The glycocalyx is composed of membrane-bound
proteoglycans, sulphated-glycosaminoglycans, as well as glycoproteins bearing acidic
oligosaccharides and terminal sialic acids3. This elaborate network contains a high
density of negatively-charged glycosaminoglycan side-chains that ensure laminar flow
is maintained through electrostatic repulsion of intravascular proteins (albumin, globulin,
and cellular components) away from the vessel wall towards the centre of the lumen3.
Other important functions of the glycocalyx include regulating microvascular tone,
inhibiting microvascular thrombosis, regulating leucocyte adhesion on the endothelium,
and acting as a bio-sensor for as well as mediating mechanotransduction of shear forces
exerted by circulating volume4,5.

In a normal healthy state, the glycocalyx shields the endothelial cells from oxidative
stress, and transmits excess luminal shear forces to endothelial cells thus initiating
nitric-oxide mediated vasorelaxation4. Vascular homeostasis is also under the control
of endothelial-derived prostacyclin, a lipid and endothelin-1, a peptide. Metabolism
of arachidonic acid by cyclooxygenase (COX) yields prostaglandin H2, which under-
goes further terminal metabolism to produce either prostacyclin (prostaglandin I2) or
thromboxane A26.

Prostacyclin is a potent vasodilator of both systemic and pulmonary vasculature as
well as an inhibitor of platelet activation7. It acts via G-protein-coupled receptors to
stimulate adenylate cyclase and increase the levels of cyclic AMP which in turn activates
protein kinase A (PKA) leading to phosphorylation of myosin light chain kinase and
platelet inositol 1,4,5-triphosphate8. Thromboxane A2 causes platelet aggregation
and vasoconstriction acting synergistically with endothelin-1, a potent endogenous
vasoconstrictor secreted by endothelial cells. Endothelin-1 also acts via G-protein-
coupled receptors. Endothelin-1 type A receptors are located mostly in vascular smooth
muscle cells and are responsible for the vascular contraction, cellular proliferation and
proinflammatory effects9. Endothelin-1 type B receptors are located on both
endothelial and vascular smooth muscle cells and are thought to play a role in
clearance of endothelin-1 as well as release of an endothelium-derived hyperpolarizing
factor10,11. The balance of endothelial vasoconstrictors and vasodilators is important in
microvascular homeostasis.

Figure 1 shows the appearance of the microcirculation under normal conditions
In severe infections, systemic inflammation and direct pathogen-mediated damage

can lead to impairment of the microcirculation, which precedes end-organ dysfunction.
Progression from severe infection to shock with vasoplegia and multi-organ failure carries
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Figure 1. Appearance of the microcirculation under normal conditions with intact endothelial
cell junctions and glycocalyx lining.

a high risk of potentially worse outcomes irrespective of the infecting pathogen12,13.
The clinical phenotype of patients with shock caused by bacterial sepsis and viral
infections like dengue carry some similarities but also are distinct in their presentation
and management. This review therefore compares and contrasts the pathophysiology of
microcirculatory dysfunction in septic versus dengue shock and the attendant effects of
fluid administration during resuscitation.

Sepsis and Dengue
According to the latest iteration of the Global Burden of Disease study, sepsis affects
50 million people worldwide leading to 11 million deaths14. Despite advances in the
understanding of the host-immune responses to sepsis, there has been no translation
to new therapies over the last two decades12.

Dengue is an arboviral infectious disease caused by a single-stranded Flavivirus,
the dengue virus (DENV) transmitted by Aedesmosquito vectors15. Dengue incidence
continues to increase globally, driven in part by globalization, climate change and a
lack of effective vaccines or prevention strategies16,17. There is a high disease burden in
Southeast Asia, Asia, South America and emerging outbreaks throughout Africa18.

In both septic shock and dengue shock, the common hallmarks of microvascular
dysfunction are endothelial cell activation and glycocalyx degradation leading to
plasma leak through a disrupted endothelial barrier, together with reduced nitric oxide
bioavailability leading to impaired microvascular tone19–22. Figure 2 shows the
microcirculation in sepsis and in dengue. Despite similarity of endothelial dysfunction,
the responses to fluid therapy in septic and dengue shock are very different. Fluid
boluses have been shown to lead to clinical improvement in dengue shock23 but
worsening outcomes in septic shock24–27, albeit fluid boluses in dengue shock tend to
be of smaller volume.

While the final common pathway of glycocalyx shedding and microvascular
dysfunction is similar in septic and dengue shock, the magnitude of the plasma leak
appears to be greater in dengue infections28.

There are several similarities in microvascular dysfunction in septic and dengue shock,
yet certain differences are also emerging, including the degree and specific components
of glycocalyx disruption. Understanding these pathophysiological mechanisms may
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lead to improved management in the form of tailored fluid resuscitation and targeted
therapeutics.

Measuring microcirculatory dysfunction
No single measurement offers comprehensive evaluation of microvascular function,
but combinations of the following techniques can provide insight into the nature of
microcirculatory disturbance in septic shock and dengue shock.

Previous methods to quantify perfusion of the microcirculation in vivo used invasive
techniques such as intravital microscopy trans-illumination in experimental animals29
or human nail-fold beds30,31 and non-invasive laser speckle and laser Doppler tracking

Figure 2. The microcirculation appearance in (a) sepsis and (b) dengue. In sepsis, there is
inflammation and direct injury of endothelial cells by bacterial proteins and toxins. Endothelial activation
leads to neutrophil chemotaxis and adherence to intercellular adhesion molecule- 1 (ICAM-1) and vascular
adhesion molecule (VCAM) expressed on endothelial cells. Concurrently, there is activation of
complement, T and B immune cells leading to release of inflammatory mediators and cytokines
which cause further inflammation and glycocalyx damage. Concurrently, the coagulation cascade is
activated, and anticoagulant/fibrinolysis pathways are impaired leading to formation of microthrombi
and compromised microvascular flow. In dengue, viral non-structural 1 (NS1) protein triggers
hyperpermeability and directly alters the endothelial layer function through the activation of several
enzymes responsible for glycocalyx degradation. Activation of immune cells leads to complement
activation and release of inflammatory mediators. There is impaired endothelial nitric oxide (eNO)
dependent vasodilation due to reduced eNO bioavailability leading to compromised microvascular flow.
Plasma leakage in both sepsis and dengue occur as a result of glycocalyx shedding and disruption of
tight and adherens junctions between endothelial cells.
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Figure 3. Sublingual microcirculation in (a) normal (b) in septic shock. The micro-vessels in
septic shock have a comparatively larger diameter and do not run the entire course resulting in a
dotted-line appearance characteristic of impaired microvascular flow in sepsis shown by the arrows in (b).
Figures courtesy Critical Care Research Group (CCRG) laboratory, QLD, Australia.

whereby a monochromatic laser light is scattered by red blood cells moving through the
microcirculation32,33. However, heterogeneity of microvascular beds in different organs,
cost, complexity and invasiveness of assessment precluded routine assessment of the
microcirculation in clinical settings using these techniques.

In light of these shortcomings, videomicroscopic techniques based on orthogonal
polarisation spectroscopy are increasingly used for direct, non-invasive imaging of
the microcirculation. Real-time visualisation of the microcirculation is now possible
with dark-field imaging technology. Using side-stream dark-field (SDF) or incident
dark-field (IDF) videomicroscopy, it is possible to visualize red blood cells flowing in
the microcirculation through mucus membranes34. Hand-held videomicroscopes have
made it possible to image the sublingual microcirculation in real-time during critical
illness, to measure the proportion of perfused micro-vessels, assess heterogeneity in flow
within the microvascular bed, and estimate the depth of the endothelial glycocalyx as a
proxy for degradation. Although SDF/IDF videomicroscopy is predominantly a research
tool at present, recent advances to automate analysis may make it feasible to evaluate
microcirculatory dysfunction and measure response to therapies in the clinical setting35.
Figure 3 shows a comparison normal and septic sublingual microcirculation.

Non-invasive assessment of endothelial nitric oxide dependent vasodilation can be
performed using real-time techniques such as brachial artery flow mediated dilatation,
and EndoPAT - an automated, user-independent technique22,36.

Biomarkers of glycocalyx degradation and endothelial activation can be
measured in circulating plasma; such markers provide an indirect measurement of the
mechanism, timing, and extent of glycocalyx and endothelial barrier disruption. In
addition, measuring urinary clearance of heparan sulphate can be a useful, non-invasive,
indicator of glycocalyx turnover28,37.

Microvascular dysfunction in sepsis
Sepsis is fundamentally an inflammatory disease initiated by host recognition of
infection-derived antigen proteins38; however, this host-response to the infection is
dysregulated leading, in some cases, to life-threatening organ dysfunction1. Septic shock
results from untreated or partially treated sepsis progressing to cause circulatory, cellular
and metabolic abnormalities associated with a higher risk of mortality1.
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Direct injury of the microvascular endothelium by release of endotoxins, myocardial
depressant factors as well as a physiologic cascade of pro-inflammatory cytokines cause
dysfunction of the circulatory system in septic shock; these activate a cascade leading
to formation of micro-thrombi and impairment of micro-vessel perfusion, endothelial
cell activation, disruption of the endothelial-glycocalyx layer and leakage of plasma into
the extravascular space. This leads to a drop in the circulating intravascular volume,
manifesting clinically as low blood pressure.

Compounding this is a state of reduced nitric oxide bioavailability, resulting in
impaired endothelial nitric oxide dependent vasodilation and compromised vasomotion.
Nitric oxide is produced by catalytic oxidation of L-arginine by nitric oxide synthase
(NOS) enzyme39. Increased arginase activity40 leading to reduced L-arginine is also likely
contributory to this hypotensive state in sepsis41.

The cornerstone of resuscitation in sepsis has therefore been fluid administration to
restore the circulating volume, with the addition of vasopressors to restore microvascular
tone and improve myocardial contractility, if necessary. The use of fluid boluses for
resuscitation in septic shock has, however, been challenged by clinical and pre-clinical
trials. In 2011, the Fluid Expansion As Supportive Therapy (FEAST) trial, demonstrated
a 45% increase in the relative risk of mortality with fluid bolus treatment compared to
non-bolus controls (95% CI [1.13–1.86]; p = 0.003)24 with excess mortality following
fluid bolus therapy being attributed to fatal cardiovascular collapse42. In 2017, Andrews
et al reported a 46% higher in-hospital mortality among predominantly HIV-positive
adults with sepsis and hypotension receiving protocolised early intravenous fluids
and vasopressors compared to usual care (95% CI [1.04–2.05]; P = 0.03)43. A recent
pre-clinical trial revealed a paradoxical increase in vasopressor requirement, a rise
in cardiac troponin I and atrial natriuretic peptide as well as increased shedding of
hyaluronan, a component of the endothelial-glycocalyx, following fluid bolus
resuscitation of endotoxaemic shock compared to non-bolus control44.

Improvements in systemic macro-haemodynamic parameters after
resuscitation do not necessarily lead to an improvement in microcirculatory parameters;
this ‘loss of haemodynamic coherence’ is an independent predictor of adverse patient
outcome45. Indeed, after macrocirculatory optimisation, attempts to directly target the
microcirculation with inhaled nitric oxide did not augment microcirculatory perfusion,
enhance lactate clearance or reduce organ dysfunction in patients with septic shock46,47.
Given these findings, further work is needed to find the best strategies to optimise
microcirculatory function in septic shock.

Microvascular dysfunction in severe dengue
Dengue is a viral illness with a broad spectrum of clinical phenotypes. While the majority
of infections are mild and self-limiting, a small proportion of patients develop dengue
shock syndrome due to an increase in vascular permeability, profound plasma leakage
and subsequent hypovolaemia48,49. Figure 4 shows bleeding manifestations seen
clinically in dengue patients.
Understanding of the mechanisms underlying microcirculatory injury in dengue is still
incomplete. The dengue non-structural 1 (NS1) protein, a viral glycoprotein secreted by
infected cells, has been shown to cause an increase in endothelial permeability leading
to vascular leakage50. Of note, recent findings from Glasner et al have shown that NS1-
mediated vascular leak depends on the integrity of endothelial glycocalyx components,
both in vitro and in vivo, rather than inflammatory cytokines51. The Dengue-NS1 protein
induces expression of several enzymes which degrade glycocalyx components, including
heparanases and sialidases52.
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Figure 4. Bleeding manifestations in dengue shock syndrome showing the appearance of linear
petechiae after blood pressure cuff inflation.

In parallel, the host immune response to dengue infection is widely recognised to
play a key role in microcirculatory injury53,54,55; excessive pro-inflammatory cytokines,
particularly tumour necrosis factor-alpha and other vasoactive mediators, also cause
tissue injury resulting in an increase in capillary permeability56.

SDF videomicroscopy has shown reduced perfusion of the sublingual
microcirculation in patients with plasma leakage during the critical phase of dengue
infection, together with a reduction in glycocalyx depth and elevated plasma levels of
glycocalyx components, both most marked in patients with the most severe plasma
leak57. Indeed, plasma syndecan-1 levels are several-fold higher in patients with
dengue shock versus septic shock, which suggests a key difference in the magnitude
or mechanisms underlying microcirculatory damage between the syndromes4,58,59. In
vitro studies have also demonstrated rearrangement of intra-cellular actin filaments,
enhanced endothelial cytoskeleton contractility, destabilisation of inter-endothelial
adherens junctions and decreased expression of tight junction protein ZO-160,61; all of
these changes likely contribute to plasma leakage. EndoPAT studies have shown impaired
endothelial NO-dependent vasodilation, which might be partly explained by both
glycocalyx breakdown and reduced NO bioavailability due to a decrease in L-arginine and
increase in arginase during dengue infection22. However, the small proportion of patients
who require vasopressors to treat dengue shock compared to septic shock suggests that
impairment in microvascular tone is more marked in the latter syndrome62.

At present, the cornerstone of dengue shock management is judicious resuscitation
with intravenous fluid, with the occasional need for vasopressors, until the critical phase
of plasma leakage ends. Notably, only a minority of children tend to require vasopressor
support in dengue shock syndrome, with more adults needing haemodynamic support63.
Based on evidence from trials of resuscitation with different types of intravenous
fluid, the WHO guidelines recommend the initial use of crystalloid solutions, followed
by colloid solutions for patients with unresponsive shock18,23. There is a paucity of
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evidence from randomised controlled trials on how rate and volume of fluid resuscitation
affects outcomes in dengue shock. Learning from research on septic shock, studies
are needed to explore whether optimisation of macrocirculatory parameters improves
microcirculatory function, or whether current fluid management strategies may be
detrimental to an already injured glycocalyx layer in dengue shock.

Summary and future directions
Impairment in perfusion, tone and barrier-function of the microcirculation is central
to the pathogenesis of both septic shock and dengue shock; but it is clear from in
vitro and clinical studies that the nature and extent of dysfunction differs between the
syndromes. These differences may impact the likelihood of responding to treatment;
volume expansion, vasopressors to enhance microvascular tone or therapeutics aimed at
restoring the glycocalyx layer and endothelial barrier may be differentially effective based
on the underlying pathology.

Studies in other conditions investigating different resuscitation fluids on the integrity
of the glycocalyx and endothelial function have shown a beneficial effect of fresh frozen
plasma (FFP) on glycocalyx restoration and improved vascular permeability64,65. The
exact components of FFP and the potential mechanisms responsible for this glycocalyx
repair remain to be defined, but preformed SDC1 in the FFP is thought to restore the
layer resulting in improved barrier and endothelial cell functions66. In addition, synthetic
colloids are thought to transiently restore the capillary permeability barrier properties
by the incorporation of small dextran molecules into the glycocalyx layer. In an animal
model of ischemic-reperfusion injury, infusion with hydroxyethyl starch (HES) reduced the
net coronary fluid filtration67.

Findings from this study suggested that it may be beneficial to give low dose
continuous colloid infusion rather than repeated larger colloid boluses in infection
related shock syndrome, which could not only reduce the plasma leakage but also
allow for lower total intravenous fluid volumes to be infused, potentially avoiding
complications associated with fluid overload.

Similarly, Muller et al reported decreased endothelial damage following resuscitation
with HES compared to Ringer’s lactate in a clinical sub-study of the Scandinavian Starch
for Severe Sepsis/Septic shock (6S) randomized clinical trial (RCT)68. However, overall
mortality was higher and there was an increased requirement for dialysis in septic
patients who received starch-based resuscitation in the 6S RCT69. This has brought to
question the relevance of biomarkers of endothelial damage as surrogates of organ
damage and clinical outcomes. The Australian and New Zealand Intensive Care Society
Clinical Trial Group (ANZICS-CTG) did not show a difference in the 90-day mortality
between HES- and saline-resuscitated critically ill patients, however there was an
increased need for dialysis with HES administration70. Findings from these RCTs have
resulted in limited use of starch-based solutions for resuscitation in critical illness.

Intravenous fluid resuscitation is likely to remain a cornerstone of management
for both syndromes; however, more work is needed to evaluate the impact of liberal
versus restrictive fluid resuscitation, optimal choice and rate of fluid administration to
prevent further damage to the ailing glycocalyx, and non-invasive methods to assess
changes in microvascular function in response to treatment. Aside from using glycocalyx
protective or restorative intravenous fluids, interest is emerging in the glycocalyx as a
target for novel host-directed therapeutic agents in infectious shock. Progress in this
field has thus far been largely confined to pre-clinical studies in animals with induced
sepsis. Some strategies which hold potential for translation to humans include; reducing
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glycocalyx breakdown by downregulating the matrix metalloproteinases responsible
for SDC1 shedding (sphingosine-1-phosphate analogues71,72), inhibiting heparanase
activity (modified heparins, Sulodexide73, Tie-2 agonists74,75), or accelerating glycocalyx
restitution by activating enzymes such as exostosin-1, involved in the heparan sulphate
synthesis pathway (fibroblast growth factor76). Progress in screening such glycocalyx-
directed therapeutics for dengue has been impeded thus far due to a lack of adequate
pre-clinical model for dengue-induced plasma leakage.

Although ultimately the best treatment strategies might be different, sharing lessons
learned from studies on the microcirculation in septic shock and dengue shock may help
to advance management and improve patient outcomes in a bi-directional manner.
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