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ABSTRACT
Hypertrophic cardiomyopathy (HCM) is most commonly transmitted as an autosomal dominant
trait, caused by mutations in genes encoding cardiac sarcomere proteins1–3. Other inheritable
causes of the disease include mutations in genes coding for proteins important in calcium
handling or that form part of the cytoskeleton4–6. At present, the primary clinical role of genetic
testing in HCM is to facilitate familial screening to allow the identification of individuals at risk
of developing the disease7,8. It is also used to diagnose genocopies, such as lysosomal9–11 and
glycogen storage disease which have different treatment strategies, rates of disease progression
and prognosis12–14. The role of genetic testing in predicting prognosis is limited at present, but
emerging data suggest that knowledge of the genetic basis of disease will assume an important
role in disease stratification15–17 and offer potential targets for disease-modifying therapy in the
near future18.
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GENETIC ARCHITECTURE OF HCM
Familial HCM is characterized by locus and allelic heterogeneity, with a high frequency
of novel individual mutations7,19. The first genetic mutation to be identified was a single
base substitution in theMYH7 gene encoding ß-myosin heavy chain, a key component
of the cardiac sarcomere20. Since then, many different mutations inMYH7 and other
genes of the cardiac sarcomere have been identified. In 5–10% of cases, HCM is caused
by mutations in genes that cause metabolic disorders21–23, neuromuscular disease24–26
or inherited genetic syndromes including Noonan syndrome27–29 (Figure 1).

THE CARDIAC SARCOMERE
Every cardiomyocyte is composed of myofibrils that run longitudinally along the cell and
are transversely subdivided into contractile units called sarcomeres30,31. The sarcomere
constitutes the fundamental motor unit of the cardiomyocyte and is composed of two
principal components – the thick filament composed of around 300 molecules of
myosin, each made up of 2 protein units of β- or α-myosin heavy chain and 4 myosin
light chain molecules, and the thin filament composed of repeating actin molecules,
closely associated with the regulatory troponin complex (troponin T (TnT), troponin I (TnI)

Figure 1. Representation of the percentage of hypertrophic cardiomyopathy cases accounted
for by pathogenic mutations in sarcomeric and non-sarcomere genes. Elliott PM, et al; 2014 ESC
Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the
Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology
(ESC), European Heart Journal 2014; 35 (39): 2733–2779, doi:10.1093/eurheartj/ehu284. Reproduced
by permission of Oxford University Press on behalf of the European Society of Cardiology.
(c) European Society of Cardiology 2014. All rights reserved. For permissions please email
journals.permissions@oup.com. This figure is not included under the Open Access license of this
publication.
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Figure 2. Representation of the cardiac sarcomere with associated proteins and interactions.
Reproduced from Ref. [31]. Abbreviations: TnI, Troponin I; TnC, Troponin C; TnT, Troponin T; Tm,
Tropomyosin; c-MYBP-C, cardiac myosin binding protein-c; ELC, Essential Light Chain; RLC, Regulatory
Chain; LMM, Light meromyosin. The domains of cMyBP-C are numbered from C0–C10; m is the regulatory
motif between domains C1 and C2 and contains the PKA phosphorylation site; PA represents a proline /
alanine-rich linker sequence between domains C0 and C1.

and troponin C (TnC)) and α-tropomyosin31–33. An additional protein, cardiac myosin-
binding protein C, contributes to the regulation of actin–myosin interaction and cross-
bridge kinetics31 (Figure 2).

Muscle contraction results from the interaction between myosin and actin in which the
globular head of the myosin molecule bends towards and then binds to actin, contracts,
releases actin, and then initiates a new cycle. The links between the myosin head and
actin are called cross-bridges; the contraction of the myosin S1 region which requires the
hydrolysis of ATP to release energy is called the power stroke31,34.

Electrical activation of the heart and cardiomyocyte contraction are coupled through
the intracellular movement of calcium. Depolarisation of the cardiomyocyte cell
membrane activates the L-type voltage-dependent calcium channels in the T tubule
causing an influx of calcium into the cell that triggers opening of ryanodine-receptor
channels in the adjacent sarcoplasmic reticulum with a rapid increase in cytosolic
calcium31. Calcium binds to TnC, inducing an allosteric conformational change in TnI
and TnT that is transmitted to tropomyosin and exposes the myosin-binding sites of
actin allowing the cross-bridges to form33. The myosin heavy chain head, with ADP and
inorganic phosphate bound to its nucleotide-binding pocket, then interacts with the
exposed actin-binding sites followed by the release of ADP and inorganic phosphate,
which occurs simultaneously with the power stroke. ATP then binds to the nucleotide-
binding pocket of the myosin heavy chain head, which detaches from actin and myosin
then hydrolyses ATP into ADP and inorganic phosphate restarting the contraction cycle31.
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SARCOMERE MUTATIONS IN HCM
Mutations in ßMYH7 andMYBPC3 account for 60–70% of HCM patients with pathogenic
variants1,19,32,35. Mutations in other sarcomere and associated protein genes are listed
in Table 1. Mutations inMYH7 are predominantly missense, with single nucleotide-
base substitutions resulting in a non-synonymous single amino acid substitution20,36.
In contrast, the majority of mutations inMYBPC3 are nonsense mutations due to
insertion/deletions, splice-site variants or frameshifts causing a premature stop codon
that results in a truncated protein transcript1,32,37.

The majority of missense mutations are believed to have a dominant negative effect
in which the mutant protein is incorporated into the sarcomere, but its interaction with
the normal wild-type protein disrupts normal sarcomeric assembly and function (poison
polypeptide hypothesis)31,38. Individual missense mutations may change an amino
acid in a highly-conserved residue, alter important kinase domains (affecting ligand
interaction) or change surface-exposed portion of a molecule altering protein-protein
interaction. Missense mutations can also cause protein misfolding and accelerated
degradation by ubiquitin-proteasomal surveillance pathways.

In truncating mutations, haploinsufficiency is thought to be the major disease
mechanism39,40. The reported absence of detectable truncated myosin-binding protein
C in western-blot analysis of myectomy specimens of patients with this mutation may be
due to nonsense mediated mRNA decay of abnormal transcripts or ubiquitin-mediated
proteasomal degradation of aberrant truncated protein40–43.

Allelic heterogeneity can be partly explained by the effect of different mutations on
the structure and function of the complete peptide. ß-myosin heavy chain, for example,
consists of a globular head, an α-helical rod and a hinge region. The globular head
contains binding sites for ATPase and actin as well as interaction sites for regulatory
and essential light chains in the head-rod region31. The majority of disease-causing
ß-myosin heavy chain mutations are found in one of four locations: the actin binding
site, the nucleotide binding pocket, the hinge region adjacent to the binding site for two
reactive thiols and in the α-helix close to the essential light chain interaction site44. Thus,
different effects on protein function might be expected depending on the position of the
mutation.

It has been speculated that the HCM disease phenotype results from reduced
contractile function caused by altered actin-myosin interactions, and consequent
inappropriate compensatory hypertrophic remodelling45,46. However, someMYH7
mutations are associated with increased cardiomyocyte mechanical contractile forces
in vitro and show an increase in calcium sensitivity, leading to increases in tension
generation and ATPase activity. Animal and cell studies have also confirmed altered
calcium homeostasis as a key contributor to the pathophysiological processes that lead
to the development of LV hypertrophy47,48.

Troponin T mutations account for less than 5% of all cases of HCM but often show
a particular phenotype. TNNT2mouse models show varying degrees of myocyte
disarray and fibrosis with minimal LVH, in common with TNNT2 disease expression in
humans49,50. Troponin-mutated mice exhibit severely impaired myocardial relaxation,
independent of the degree of fibrosis, and consistent with the finding of increased
calcium sensitivity51–53. Some studies suggest that some TNNT2mutations are associated
with a high incidence of sudden death which may also relate to calcium loading in
cardiomyocytes54,55.

Findings from murine models of HCM suggest that the increased contractility seen
with some mutations is at the expense of inefficient ATP utilization. Furthermore, animal
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Table 1 List of genes in which pathogenic mutations are associated with hypertrophic cardiomyopathy. The chromosome location and
the proportion of HCM cases attributed to mutations in these specific genes are included.

Protein Gene Chromosome
location

Proportion of HCM
caused by mutations

SARCOMERIC PROTEINS
B-Myosin Heavy Chain 7 MYH7 14q12 40–44%
Myosin-Binding Protein C 3 MYBPC3 11p11 35–40%
Troponin T TNNT2 1q32 5–15%
Troponin I TNNI3 19q13 5%
Tropomyosin alpha-1 chain TPM1 15q22 3%
Regulatory Myosin Light Chain MYL2 12q24 1–2%
Essential Myosin Light Chain MYL3 3p21 1%
Actin ACTC1 15q14 1%
Troponin C TNNC1 3p21 <1%
Z-DISK PROTEINS
ZASP –LIM binding domain 3 LBD3 10q22 1–5%
Alpha-Actinin-2 ACTN2 1q42 <1%
Ankyrin repeat domain containing protein –1 ANKRD1 10q23 <1%
Muscle LIM Protein CSRP3 11p15 <1%
Myozenin-2 MYOZ2 4q26 <1%
Telethonin TCAP 17q12 <1%
Vinculin VCL 10q22 <1%
Nexilin NEXN 1p31 <1%
Filamin C FLNC 7q32 <1%
SARCOMERE-ASSOCIATED PROTEINS
Desmin DES 2q35 <1%
Four and a Half Lim Domain Protein –1 FHL-1 Xq26 <1%
CALCIUM-HANDLING PROTEINS
Phospholamban PLN 6q22 <1%
Calreticulin 3 CALR3 19p13 <1%
Calsequestrin 2 CASQ2 1p13 <1%
Junctophilin 2 JPH2 20q13 <1%
HCM PHENOCOPIES (METABOLIC & LYSOSOMAL STORAGE DISORDERS)
AMP-gamma2 subunit PRKAG2 7q36
Glucosidase A (Pompe’s disease) GAA 17q25
Alpha-Galactosidase A (Anderson-Fabry Disease) GLA Xq22
Lysosomal-associated membrane protein 2
(Danon’s Syndrome)

LAMP2 Xq24

Together with other HCM
phenocopies account for
5–10% of HCM cases

HCM PHENOCOPIES (Ras-MAPK)
Noonan Syndrome KRAS 12p12

SOS1 2p22
PTPN11 12q24
RAF1 3p25

LEOPARD syndrome PTPN11 12q24
RAF1 3p25

Together with other HCM
phenocopies account for
5–10% of HCM cases

HCM PHENOCOPY (NEUROMUSCULAR DISORDERS)
Friedreich’s Ataxia GAA expansion in FXN 9q13 Together with other

HCM phenocopies account
for 5–10% of HCM cases
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and human studies suggest that HCM is associated with depleted energy stores and
abnormal ATP/ADP ratios56–59. Inefficient utilization of ATP is also seen in metabolic
disorders or mitochondrial cytopathies, which can produce a pattern of LV hypertrophy
similar to that in sarcomeric HCM.

Recently, mutations in genes encoding z-disc proteins including myozenin (MYOZ2),
telethonin (TCAP), alpha-actinin-2 (ACTN2), muscle LIM protein (CRP3) and nexilin (NEXN)
have been implicated in HCM31. Some mutations in Z-disc proteins have a pleotropic
effect, causing an HCM phenotype in certain individuals and a DCM phenotype in others
within the same family60.

CHILDHOOD-ONSET HCM
The importance of sarcomeric protein gene mutations in childhood hypertrophic
cardiomyopathy is unknown. The observation that the development of left ventricular
hypertrophy in individuals with familial disease often occurs during the period of somatic
growth in adolescence has led to the suggestion that sarcomeric protein disease in very
young children is rare61,62. However, studies of children with HCM have shown that, as
in adults, sarcomeric protein gene mutations account for approximately 50% of cases of
idiopathic HCM, even in infants and young children63,64.

PHENOTYPIC VARIABILITY
There is a substantial variation in the expression of identical mutations indicating that
other genetic and possibly environmental factors influence disease expression. The
effect of age is perhaps the best characterized factor, most patients developing ECG
and echocardiographic manifestations of the disease after puberty and before the age
of thirty65,66. Sex also appears to influence disease expression in sarcomere protein
disease67,68. Other potential modifying factors include renin-angiotensin-aldosterone
system gene polymorphism69–71, and the occurrence of homozygosity and compound
heterozygosity72–74.

GENETIC ADVANCEMENTS
The impact of more rapid, cost-effective gene sequencing methods, together with
improved cellular models including induced pluripotent stem cells, gene-editing
technology, larger sequenced control cohorts and deep clinical phenotyping in cases
means that we are at an exciting crossroads in the genetics of HCM. This provides
researchers with significant opportunity to identify novel candidate causative genes and
to potentially allow clearer genotype-phenotype correlations to be made, thereby laying
the foundation for more personalised patient care.
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