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ABSTRACT
Macrophage migration inhibitory factor (MIF) has been described as a pro-inflammatory
cytokine and regulator of neuro-endocrine function. It plays an important upstream role in the
inflammatory cascade by promoting the release of other inflammatory cytokines such as
TNF-alpha and IL-6, ultimately triggering a chronic inflammatory immune response. As lungs
can synthesize and release MIF, many studies have investigated the potential role of MIF as
a biomarker in assessment of patients with pulmonary arterial hypertension (PAH) and using
anti-MIFs as a new therapeutic modality for PAH.
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PULMONARY ARTERIAL HYPERTENSION (PAH)
PAH is a devastating disease that leads to progressive systemic hypoxemia, right
ventricular failure and death1. PAH demonstrates rapid deterioration after diagnosis, with
an average survival time for primary pulmonary hypertension of only 2.8 years, and an
estimated 5 year survival rate of between 21–34%2,3. Although previously considered
a rare disease, over the last two decades, there has been an increase in the diagnosis
possibly due to the increased awareness of the physician and improved diagnosis
methods4. PAH can occur in association with chronic lung disorders, with hypoxia
playing a pivotal role in the etiology. Hypoxia induces pulmonary vessel constriction
and persistent hypoxia results in pulmonary vascular remodeling resulting in increased
vessel wall thickness and narrowing of the vessel5,6 (Figure 1). Pulmonary vascular
remodeling chronically increases pulmonary vascular resistance (PVR), leading to right
ventricular failure, decreased left ventricular preload and reduced cardiac output. The
remodeling also causes mismatch of blood flow and ventilation (V/Q), which, together
with decreased cardiac output and possible cardiac shunt, lead to further hypoxia. A
major factor in the rapid progression of PAH symptoms may be due in part to the creation
of a vicious cycle: PAH can be initiated by hypoxia, itself causes hypoxia, and hypoxia in
return exacerbates PAH.

Current therapies for PAH are relatively ineffective and their benefits limited to
improving ability to exercise. They include prostacyclin and its analogues, endothelin
receptor antagonists, and phosphodiesterase type 5 inhibitors7–9. Notably, current
therapies do not significantly improve mortality, rate of clinical progression of disease,
or WHO functional class10,11. The limitation of current treatment suggests the need for a
better understanding of the pathogenesis and identification of new therapeutic targets
for this lethal disease.

Figure 1. Role of hypoxia in pulmonary hypertension. (A) Hypoxia induces pulmonary vascular
remodeling resulting in increased vessel wall thickness and narrowing of the vessel. The remodeling
chronically increases pulmonary vascular resistance. (B) A major factor in the rapid progression of PAH
pathology is due in part to the creation of a vicious cycle: Hypoxia induces vasoconstriction, which itself
adds to the hypoxia, and hypoxia in return exacerbates PAH.
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VASCULAR REMODELING
Vascular remodeling leads to increased vessel wall thickness and narrowing of the vessel
lumen5,6. Endothelial, fibroblasts and smooth muscle (SMC) are the principal intimal,
adventitial and medial cells of the vascular wall, respectively. Chronic hypoxia induces
pulmonary vascular cell proliferation and remodeling, but the mechanisms involved
remain unclear. While morphological changes to the intima are observed, they are
usually minimal12. Chronic hypoxia induces structural changes to the pulmonary arteries
including the appearance of SMC-like myofibroblasts expressing α-smooth muscle actin,
in previously non-muscularized vessels. While hypoxia-induced remodeling is associated
with medial hypertrophy, direct stimulation of SMC proliferation by hypoxia remains
controversial13.

There are reports of hypoxia-driven smooth muscle cell proliferation14,15, but several in
vitro studies have shown that hypoxia does not directly increase SMC proliferation16–18 or
may actually decrease proliferation19,20. However, fibroblasts which are less differentiated
than the other two cell types, have a greater proliferative response to hypoxia than
either endothelial cells or SMC20–23. Fibroblasts are uniquely positioned in the scheme
of remodeling being able to rapidly proliferate, contract, migrate, synthesize cytokines
and other mediators, and transdifferentiate into other cell types such as the SMC-like
myofibroblast24. Animal models indicate that the adventitia undergoes the earliest and
most profound changes under hypoxic conditions25,26 and in vitro, hypoxia induces
fibroblast proliferation in the absence of any exogenous co-mitogen27.

MACROPHAGE MIGRATION INHIBITORY FACTOR (MIF)
MIF was originally described over 50 years ago in studies of delayed hypersensitivity in
which it was suggested that lymphoid cells released soluble materials that inhibited the
random migration of peritoneal exudate cells in vitro28,29. This resulted in the original
nomenclature, but since that time, a multiplicity of functions have been assigned to the
molecule has led to the less formal epithet of simply MIF30.

MIF is a conserved protein of 12.5 kDa, of which homologues can be found in plants,
nematodes and vertebrates. In its active form, it is a homotrimer which is associated
with two distinct enzymatic activities. The first, a phenylpyruvate tautomerase31, residing
within the hydrophobic pocket between adjacent monomers. This tautomerase activity
and structural relationship are similar to a second human protein, D-dopachrome
tautomerase (D-DT)32, with which human MIF shares around 34% sequence homology.
The similarities between structures and activities of the two molecules have led to the
D-DT designation as ‘MIF-2’33.

While the relevance of the tautomerase activity to human disease remains unclear,
the hydrophobic pocket within which the activity is located binds to cell surface CD74
molecules34 thereby activating its CD44 co-receptor initiating cellular activation, cell
proliferation and inhibition of apoptosis35,36. The second MIF catalytic activity is a
thiol-protein oxidoreductase37 within a conserved [Cys57-Ala-Leu-Cys60] region of
the molecule. This antioxidant activity has been shown to be particularly relevant to
situations of cellular oxidative stress38–41. Thus, these two characteristics of MIF alone
make it a molecule of interest in the development and progression of pulmonary arterial
hypertension.

Furthermore, MIF is a potent proinflammatory cytokine involved in both chronic and
late-stage acute inflammation and plays a key role in inflammatory cell proliferation. It
is stored within cytoplasmic pools and can be released to extracellular compartments
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following interaction with the Golgi complex-associated protein p11542. Extracellular
release of MIF is initiated by a series of factors including cytokines, materials from
Gram-positive or Gram-negative bacteria43,44 oxidative stress45, and steroids30. MIF is
involved in wound healing46, synoviocyte proliferation47, and transformation from chronic
inflammation to tumorigenesis48,49.

MIF increases proliferation of many cell types48,50–54 including fibroblasts36,46,54–57,
endothelial cells58, and SMCs59,60. MIF also appears to be involved in systemic vascular
remodeling, including carotid intima-media thickening60,61, and restenosis after vascular
injury60. One possible mechanism of MIF’s proliferative effects is through the inhibition of
p53, an endogenous cell cycling inhibitor that induces G1 stage arrest or apoptosis62,63,
and is also involved in pulmonary arterial smooth muscle cell proliferation50.

MIF AND THE LUNG
While early studies showed the anterior pituitary as a possible source of circulating
MIF64, more recent studies have shown that in severe acute inflammation, the lungs are
a major source of the circulating MIF, which can have a profound effect on cardiovascular
function65,66. While MIF is a normal component in the epithelial lining fluid of the lung
there is a significant increase in accumulation in the alveolar airspaces in the acute
respiratory distress syndrome (ARDS)67. The increased lung MIF is both at the gene
expression and protein levels and can be associated with haplotypes located in the 3′
end of the MIF gene68. Furthermore, the increased MIF concentrations due to a particular
challenge, in both the alveolar spaces and the plasma, are age-dependent69. Thus, while
increased extracellular MIF emanating from the adult lung appear to be detrimental,
a recent study by Roger et al showed that in very preterm infants, low levels of MIF on
postnatal day 6 were associated with an increased risk of developing bronchopulmonary
dysplasia and late-onset neonatal sepsis70.

There are also several chronic inflammatory lung-associated pathologies that have
been noted to be associated with changes in MIF. In particular, in idiopathic pulmonary
fibrosis there is increased MIF expression in areas of remodeling, bronchiolar and
alveolar epithelium, and ongoing fibrosis71,72. In systemic sclerosis, where MIF may
be involved in the amplifying proinflammatory loop leading to scleroderma tissue
remodeling73, an MIF promoter polymorphism is associated with susceptibility to
pulmonary arterial hypertension in diffuse cutaneous systemic sclerosis (SSc)74.
Functional promoter polymorphisms in the MIF gene, such as the high-expression MIF
haplotype, C7, which is defined by−173*C and−794 with 7 CATT repeats, can also affect
the clinical presentation of SSc75.

In addition, recent studies in a cohort of individuals with chronic obstructive
pulmonary disease (COPD), demonstrate an association with increased plasma MIF and
its acute exacerbations76, although others have suggested that MIF and its receptor
are required for the preservation of normal alveolar structure and normal pulmonary
endothelial cell apoptosis77,78.

RELATIONSHIP BETWEEN HYPOXIA AND MIF
Several studies describe a clear link between MIF and the presence of hypoxia. Hypoxia
can lead to the secretion and elevation of MIF in fibroblasts79, cardiac myocyte80,
monocytes81, and endothelia81. Hypoxia induces the stabilization of the transcription
factor hypoxia inducible factor-1 alpha (HIF-1 α). When stabilized, HIF-1 α binds with
aryl hydrocarbon receptor nuclear translocator (ARNT)/HIF-1 β. This hetero-dimer binds
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to elements found in the promoters of many hypoxia-responsive genes, leading to the
expression of these target proteins such as vascular endothelial growth factor (VEGF),
endothelin-1 (ET-1), and erythropoietin (EPO)82.

In 2006, Welford et al. demonstrated that the MIF gene contains an hypoxia response
element within its promoter, which could explain the hypoxia induced MIF elevation79.
This mechanism also has been suggested by others83–86. Furthermore, hypoxia in the
presence of increased TNF α leads to an increase of the MIF receptor molecule CD44 on
the surface of monocytes87.

Once released, MIF can contribute to hypoxic pulmonary vasoconstriction, which
if maintained can lead to pulmonary vascular remodeling88. Zhang et al have shown
that MIF affects delayed hypoxia-induced pulmonary hypertension and suggest that
the action is via agonist enhancement on smooth muscle cells. However, while much is
discussed about the apparently detrimental aspects of MIF inflammatory activity, it must
be remembered that MIF has been shown to be protective in the early stages of ischemia.

Under ischemic conditions the extracellular release of MIF and its interaction with
the CD74 receptor activates AMPK, thereby promoting glucose uptake and protects the
cardiomyocyte39. In addition, the anti-oxidant activities of MIF can reduce intracellular
oxidative stress and reduce injury in the post-ischemic heart38.

RELATIONSHIP BETWEEN HYPOXIA, MIF, AND PULMONARY VASCULAR
CELL PROLIFERATION
Pulmonary vascular cell proliferation is the major pathological change during hypoxia-
induced remodeling. The pulmonary vascular wall is composed of three layers of different
cells: endothelial cells in the intima, SMCs in the media, and fibroblasts in the adventitia.
Hypoxia in vivo induces proliferation of all of these cells, but only fibroblast proliferation
is induced by hypoxia in vitro13 in the absence of exogenous co-mitogens. In addition,
fibroblast proliferation takes place earlier after hypoxic exposure than SMCs13, and
hypoxia induces SMC proliferation only in co-culture with fibroblasts20.

Therefore, it appears that fibroblasts are essential to trigger the vascular remodeling
process, perhaps because they are less differentiated and prepared for local injury
repair27. Fibroblasts are remarkably plastic, allowing for rapid migration, proliferation,
cytokine expression, and differentiation27. Fibroblasts differentiation to myofibroblasts24
is a critical step for vascular remodeling and hypoxia alone can induce fibroblast
proliferation20,27,89 and differentiation to myofibroblasts90,91. Studies indicate that the
lung is a major source of MIF92, is released from the lungs in patients with PAH93 and
plays a key role in hypoxia-induced cell proliferation45.

MIF AND PULMONARY ARTERIAL HYPERTENSION
PAH is a critical, and potentially devastating, clinical syndrome. The disorder, is
particularly affects the small pulmonary arteries, and is characterized by vascular
narrowing due to high-tone and abnormal vaso-reactivity. These abnormalities, if not
corrected, lead to pulmonary vascular remodeling and intraluminal obstruction. Thus,
the blood leaving the right side of the heart encounters an increased resistance to flow.
While this can occur at any stage of life, it is particularly important in neonatal and adult
pulmonary medicine.

In the neonatal setting, PH is associated with several conditions including, congenital
heart disease94, connective tissue disease95 or sickle cell disease96, stenosis97,98,
and chronic lung disease of prematurity99,100; and in adults PH is commonly seen in
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chronic obstructive pulmonary disease (COPD)101–103, sleep disordered breathing (sleep
apnea)104,105 and sickle cell disease106,107.

While hypoxia plays a pivotal role in the etiology, inducing pulmonary vessel
constriction, and persistent hypoxia results in pulmonary vascular remodeling, leading
further narrowing of the vessel, not all individuals subjected to hypoxia or hypoxemia
develop pulmonary hypertension or other sequelae.

INHIBITION OF MIF ACTIVITY
The importance of MIF in the pathogenesis of disease has led to the development of
inhibitory strategies to try to disrupt these processes. Early studies used polyclonal
antibodies to inhibit MIF inflammatory activities to prevent the lethality in rodent models
of acute hepatic failure108 and septic peritonitis109.

Since that time, Phase 1 clinical trials have assessed the possible use of anti-MIF
antibodies cases of malignant solid tumors, metastatic adenocarcinoma110, and lupus
nephritis111. However, a disadvantage of the monoclonal antibody approach as a
therapeutic pathway, is the possible development of local and systemic inflammatory
reactions during administration. Therefore, a second approach whereby endogenous
anti-MIF antibodies are generated, has also been advanced. This method involves active
immunization with an MIF/tetanus toxin DNA vaccine and has been shown to protect
against acute lung injury resulting from endotoxemia or a septic peritonitis112.

In 2002, Leng et al demonstrated that MIF interacts with the extracellular domain of
the HLA class II histocompatibility antigen gamma chain (CD74), initiating activation of
cell proliferation, and prostaglandin E2 production34. Since that time there has been
considerable effort expended on developing small molecule inhibitors that could block
the MIF-CD74 interaction. Studies have suggested that an imino-quinone metabolite of
acetaminophen, N-acetyl-p-benzoquinone imine (NAPQI), can inhibit both the isomerase
and inflammatory activities of MIF113.

Perhaps the most studied of these molecules is (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-
5-isoxazole acetic acid methyl ester, or ‘ISO-1’114,115. There have been many modifications
on this and other chemical scaffolds to try to develop more effective and selective
inhibitory molecules116–119. Recently, iguratimod, a novel antirheumatic drug120 used in
China and Japan, was found to selectively inhibit MIF inflammatory activity121. In many
cases these molecules have been found to modify the pathology of animal models.

THYROXINE AS AN MIF INHIBITOR
The thyroid hormone, thyroxine, 3,5,3′,5′-tetraiodothyronine (T4), has been identified as
a potent inhibitor of MIF proinflammatory activities122. T4 is produced in the thyroid at
around 100 mg/day123. While previously considered solely as a prohormone and parent
molecule for T3 (3,3′,5-triiodo-L-thyronine), both molecules have been shown to elicit
profound effects on myocardial activity124,125, and extra thyroidal conversion of T4 to
T3, by specific deiodinases, occurs in a variety of tissues and precedes many thyroid
hormone actions126.

Once released from the thyroid, thyroxine circulates in the blood, bound with
thyroxine-binding globulin, transthyretin and albumin with only around 0.05% in the
unbound, free-thyroxine (fT4) form127. Cellular actions of thyroxine occur at the plasma
membrane, in the cytoplasm in the mitochondria or the cell nucleus128.

Non-genomic action of T4, which can be initiated at approximate physiological
concentrations of free T4 of around 10−10M129, are initiated by interaction with the
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integrin av β3 plasma membrane receptor, or in the cytoplasm130. Interaction with the
integrin receptor on the cell surface stimulates MAPK (ERK1/2) activation125,129,130, leading
to a series of downstream events including nuclear-trafficking of specific proteins and
serine phosphorylation of nucleoproteins128, including estrogen receptor-α, thyroid
hormone nuclear receptor β1, and signal transducing and activator of transcription
(STAT)-1 α.

While T4, and its hormonally inactive dextro-rotary isomer D-T4, are effective inhibitors
of MIF activity, triiodothyronine (T3), a T4 metabolite, is not122. In a clinical situation such
as sepsis, plasma concentrations of T4 and MIF are inversely correlated, suggesting a
clinically-relevant interaction between these two molecules122. In addition, a potential
role of MIF-T4 interactions in the pathogenesis of PAH has been suggested since T4
inhibits MIF-induced ERK 1/2 phosphorylation in macrophages; T4 inhibits MIF activation
of NF κB RelA/p65 in fibroblasts; and MIF inhibits T4-induced CXCR2 mRNA accumulation
in vascular smooth muscle cells131. Thus, a schematic of potential mechanisms in
vascular cells in hypoxia-induced altered MIF-T4 interactions is shown in Figure 2.

INHIBITION OF MIF IN PULMONARY HYPERTENSION
Studies from our group have found significantly increased plasma MIF concentrations
in individuals with primary PH or PH secondary to interstitial lung disease, compared
to control subjects45. Therefore, we examined the effect of MIF lung fibroblast growth
and showed that the increased hypoxia-induced proliferation was MIF dependent.
Furthermore, in a mouse model of hypoxia-induced pulmonary hypertension, the
pulmonary vascular remodeling, increased right ventricular systolic pressures and right
sided cardiac hypertrophy were all significantly decreased in the presence of a small
molecule inhibitor of MIF. This suggests that MIF plays a significant role the development
of PH.

Figure 2. Potential mechanisms in vascular cells involving altered MIF-T4 interactions induced
by hypoxia. Free thyroxine can bind to integrin avb3, decreasing extracellular ANG-2 accumulation and
reducing vascular resistance. Hypoxia induces the stabilization of HIF1 α leading to the expression of
endothelin-1 and MIF. Once released, Endothelin-1 and MIF induce cell proliferation. Hypoxia also induces
production and release of BMP. Decreased fT4 (due to interaction with MIF) allows release of ANG-2 which
binds its receptor TIE2 leading to transcription BMPR1a a component of the BMP receptor. Interaction
between BMP and its receptor leads to altered vascular cell proliferation.
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Figure 3. Relation between STAT5 and MIF in PH. Recent studies have highlighted the role of STAT5
in the pathogenesis of PH, especially in the sex bias associated with the pathology135,136. STAT5 is the
regulator of multiple genes. There is a functional interdependence between MIF and HIF1 α, which can
also impinge on STAT5 activity.

It should be noted, however, while in human idiopathic pulmonary arterial
hypertension there is a two- to four-fold higher prevalence in postpubertal women than
in men132, there is an opposite male-sex bias in the hypoxia, or monocrotaline rodent
models of pulmonary hypertension5,133,134.

In associated studies we examined the role of the signal transducer and activator
of transcription 5 (STAT 5) in the development of PH, and showed decreased STAT5
expression in the obliterative lesions of human idiopathic PAH, and that deletion of STAT5
from the vascular smooth muscle cells abrogated the male bias135. This is of relevance
since STAT5 can act as a mediator in hypoxia-mediated gene expression136, and that, at
least in some cells, MIF can promote intracellular signaling by STAT5137 (Figure 3).

In addition to the pulmonary pathology, clinical studies suggest that PAH is also
associated with cognitive impairment, depression and anxiety. Recent studies have
shown, in the hypoxic mouse model, that hypoxia induces increased MIF
accumulation within the hippocampus (at both level of mRNA and protein), and
metabolic, biochemical, and electro-physiological changes within the hippocampus
were associated with cognitive dysfunction.138,139. These hypoxia-driven changes were
corrected by the administration of an MIF inhibitor138,140. However, it remains unclear
whether the cognitive dysfunction was corrected by direct inhibition of the increased MIF
within the hippocampus, or as a result of the improvement in pulmonary function.

MIF INHIBITION IN CONGENITAL DIAPHRAGMATIC HERNIA (CDH)
CDH is identified in around 1/3000 newborns141. It results from a defective diaphragm
allowing the protrusion of abdominal tissues into the thorax, thereby interfering
with normal lung development leading to lung hypoplasia and persistent pulmonary
hypertension of the newborn141. Rodent models of the condition have been developed,
and often use administration of a single dose of 2,4-dichlorophenyl-P-nitrophenyl
(Nitrofen) on the tenth gestational day142. Poor vascular growth in the CDH rat model
is associated with poor lung growth. The exact mechanism of defective angiogenesis
associated with CDH is not fully understood. However, studies show that inhibiting
the MIF activity in the rat CDH model results in higher expression of VEGF and Tie-2
receptor while normalizing Sflt-1. Together, these molecular changes lead to a significant
improvement in pulmonary angiogenesis as well as lung development as shown by CT
and histological studies143.
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MIF AND OTHER NEW PATHWAYS
In addition to being a potent vascular vasodilator, nitric oxide (NO) enhances
angiogenesis by activating endothelial cell growth and tube formation144. Neonatal
rats with CDH were treated with ISO-92 and we observed a significant increase of
phosphorylated eNOS (P-eNOS), which is known to increase NO production.

This was also associated with decreases in both arginase-1 and -2 expression.
Arginase is a urea cycle enzyme which competes with endothelial NO synthetase (e NOS)
and inhibits NO synthesis via a common substrate, L-arginine. Hypoxia upregulates the
expression of both arginase enzymes145.

In our study, among neonates with CDH, both arginase-1 and -2 enzymes were
overexpressed significantly in comparison to healthy control neonates. This may suggest
that, both NO production and its bioavailability were significantly compromised among
neonates with CDH.

We have shown that treating pregnant adult rats with ISO-92 after inducing CDH
around day 8-9 of gestation, significantly decreased both arginase-1 and -2 expression,
which is known to eventually increase NO production and its bioavailability. Accordingly,
we postulate that inhibition of both arginase-1 and -2, could be the mechanism through
which inhibition of MIF activity (using ISO-92 in our model), can lead to increase
NO bioavailability in utero, thereby improving pulmonary angiogenesis and lung
development146.

CONCLUSION AND FUTURE STUDIES
Macrophage migration inhibitory factor is a key mediator of inflammatory responses and
innate immunity and has been implicated in the pathogenesis of several inflammatory
and autoimmune diseases. MIF’s role in the pathogenesis of PAH, induced by chronic
hypoxia, or associated with chronic lung diseases, or idiopathic, has been explored in
many studies. The link between endothelial dysfunction and MIF in animals models with
chronic PAH has been established. Other studies highlighted MIF role as a biomarker for
the assessment of PAH associated with chronic obstructive lung diseases. Discovering
the role played by T4 as a natural ligand inhibitor of MIF’s inflammatory activity opens
the door for new therapeutic role of anti-MIF’s, as shown in preclinical and clinical
data, which suggest that blocking the inflammatory active site of MIF may both reduce
inflammatory responses and improve the availability of T4. Preclinical data using different
anti-MIF’s in different animal models with chronic and severe forms of pulmonary
hypertension are very promising. Whether inhibition of MIF or its oxidized forms may offer
promising therapy in PAH, needs to be elaborated in future human interventional studies.
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