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ABSTRACT

Human genetic discoveries offer a powerful method to implicate pathways of major importance to

disease pathobiology and hence provide targets for pharmacological intervention. The genetics of

pulmonary arterial hypertension (PAH) strongly implicates loss-of-function of the bone morphogenetic

protein type II receptor (BMPR-II) signalling pathway and moreover implicates the endothelial cell as a

central cell type involved in disease initiation. We and others have described several approaches to

restore BMPR-II function in genetic and non-genetic forms of PAH. Of these, supplementation of

endothelial BMP9/10 signalling with exogenous recombinant ligand has been shown to hold

considerable promise as a novel large molecule biopharmaceutical therapy. Here, we describe the

mechanism of action and discuss potential additional effects of BMP ligand therapy.
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INTRODUCTION

Pulmonary arterial hypertension (PAH) is a disease of pathological vascular remodeling, characterized

by medial thickening and the formation of occlusive vascular lesions that obstruct the pulmonary

circulation, predominantly at the level of the pre-capillary arterioles. This loss of the pulmonary distal

circulation, and the resultant increase in pulmonary vascular resistance (PVR), leads to an elevation of

pulmonary arterial pressure and right ventricular hypertrophy. PAH is a rare disease, with a prevalence

of 15 to 26 patients per million individuals and an incidence of 2.4 to 7.6 cases per million annually.1,2

It can arise as a primary disease, either in an idiopathic (IPAH) or heritable (HPAH) form, or as a

condition associated with immune disorders such as HIV, connective tissues diseases, or exposure to

particular drugs or toxins. In its idiopathic and heritable forms, PAH presents in a relatively young

patient population, aged 30–50 years, and preferentially in women at a rate of roughly 2.3:1. If left

untreated, PAH can lead to death from right-sided heart failure within 3–5 years of diagnosis.

Existing treatments for PAH were developed for this indication because of their effects on vascular

tone. The regulation of vascular tone by endothelial cells and vascular smooth muscle cells (SMCs) is

mediated by a balance of vasodilators, such as prostacyclin and nitric oxide (NO), and vasoconstrictive

agents, including endothelin-1. Established PAH is associated with a shift in this balance towards

excessive pulmonary vasoconstriction. Recognition of this imbalance was the driving force behind the

development and approval of a range of vasodilatory therapies for PAH.3 These therapies can be

divided into three main classes: (i) prostanoids, including epoprostenol and more stable prostacyclin

analogues such as iloprost, beraprost and treprostinil; (ii) endothelin receptor antagonists, including

bosentan, ambrisentan and macitentan; and (iii) phosphodiesterase 5 inhibitors, such as sildenafil and

tadalafil. While these treatments have been successful in improving the haemodynamic parameters

and functional status of patients, the three-year survival rate for PAH patients remains poor.4 Although

these therapies may also have modest effects on vascular SMC proliferation, available evidence

suggests a minimal impact on the process of vascular remodeling in the lungs of patients with PAH.5

Here we propose that more effective therapies for PAH will derive from a greater understanding of the

molecular basis of pathological pulmonary vascular remodeling, particularly by targeting pathways

identified by human genetics in PAH patients.

THE GENETIC BASIS OF PAH

Heritable PAH (HPAH) is an autosomal dominant disease, marked by a low penetrance (average

20–30%) in at-risk individuals.6 While the existence of this familial form of PAH has been recognized

since the first description of the disease, it was only 15 years ago that mutations in BMPR2, the gene

encoding the bone morphogenetic protein (BMP) type II receptor (BMPR-II), was identified as the cause

of approximately 75% of HPAH cases.7,8 BMPR2 mutations also account for 15–26% of seemingly

idiopathic or sporadic cases of PAH, including cases of de novo mutations and parental transmission

with no record of a previous family history of disease. As a result of these findings, the definition of

HPAH was recently updated to include not only patients in a family with two or more documented cases

of PAH, but also includes any PAH patient possessing a mutation in BMPR2.9

A range of mutations in BMPR2 have been reported in PAH patients. The majority of these mutations

lead to a state of haploinsufficiency,10 where the mutant allele leads to no production of a protein

product. The protein expression from the wild type allele is normal but overall protein expression is

reduced by at least 50%. Patients bearing BMPR2 mutations develop PAH earlier, have more severe

disease and die sooner than those without mutations.6 Interestingly, PAH patients with BMPR2

mutations exhibit reductions in BMPR-II protein levels of greater than 75% when compared to control

subjects, suggesting that the development of PAH can suppress receptor levels to a greater extent than

what can be accounted for by haploinsufficiency alone.11 Reduced BMPR-II protein levels and impaired

downstream signaling have also been identified in idiopathic PAH patients lacking mutations in

BMPR2, as well as in common, non-genetic rodent models of disease,12 further supporting a central

role for reduced BMPR-II signaling in most forms of the disease, independent of etiology.

When taken together, these factors make the BMPR-II signaling pathway an extremely attractive

target for next-generation therapeutic intervention. However, the translation of this approach into

in vivo pre-clinical studies has been limited by uncertainty regarding which cell type or types are

critically affected by the loss of BMPR-II signaling, and the complexity of the BMP signalling family.

Fortunately, genetic studies describing disease phenotypes associated with mutations in other

components of the BMP signaling pathway, coupled with knowledge of the tissue-specific distribution
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of these proteins, can be used to inform decisions on which cell types, and which BMPs, play important

roles in the initiation of PAH.

BMPs are members of the transforming growth factor-b (TGFb) superfamily, a highly complex family

of proteins including over 30 ligands that signal through heteromeric complexes of type I and type II

receptors. As a type II receptor of this superfamily, BMPR-II can form complexes with several type I

receptors, including the activin like receptor kinases ALK1, ALK2, ALK3 or ALK6, with each receptor

complex recognizing a specific subset of BMP ligands.13 Canonical signaling generally involves

phosphorylation of the Smad-1, 5 or -8 transcription factors, which complex with the co-smad, Smad-4,

and translocate to the nucleus to induce gene expression. The tissue-specific nature of BMP responses

is highly dependent upon the components making up the ligand-receptor complex. Numerous

accessory receptors, such as endoglin (ENG), also modify signaling, further contributing to the

tissue-specificity of BMP responses.

Following the initial identification of BMPR2 mutations in PAH, much of the work investigating the

role of deficiency of this receptor in disease pathogenesis focused on the impact of these mutations on

pulmonary arterial SMC (PASMC) proliferation and migration.14 In smooth muscle cells, BMP ligands,

including BMP2 and BMP4, block serum-induced proliferation via complexes of BMPR-II with ALK3 or

ALK6.14 However, mutations in ALK3 and ALK6 do not cause pulmonary vascular disease, but are

instead associated with juvenile gastrointestinal polyposis15 and hereditary brachydactyly,16

respectively. This fact calls into question the importance of these receptors, and the signaling

complexes that they form, in the pathogenesis of PAH.

More recently, several studies have demonstrated a role for impaired endothelial BMP signaling in

the pathogenesis of PAH. In addition to increased endothelial cell proliferation and enhanced

susceptibility to apoptosis,17,18 loss of BMPR-II has also been shown to influence endothelial cell barrier

integrity and pulmonary vascular permeability.19 Genetic evidence also supports a role for the

pulmonary endothelium as the critical initiating cell type in PAH. Mutations in Endoglin and ALK1 (gene

symbol ACVRL1), two proteins found almost exclusively on the endothelium, are primarily associated

with hereditary haemorrhagic telangectasia (HHT), a disease that causes vascular abnormalities,

including telangiectases in the skin and mucosal regions, and arteriovenous malformations in the lung,

liver, gastrointestinal tract and brain. In addition to HHT, ACVRL1mutations are occasionally associated

with PAH, demonstrating a role for these molecules, and the receptor complexes they form, in the

maintenance of pulmonary vascular homeostasis.20 To date, mutations in eight genes have been found

to play a causal role in idiopathic and heritable PAH (Fig. 1). Notably, of all the known mutations

identified to date, six out of eight of these directly or indirectly implicate the BMP signalling pathway,

and particularly endothelial BMP signaling, as central to pathobiology. Taken together, these findings

strongly support the development of therapeutic strategies that restore expression or function of

BMPR-II, particularly in pulmonary vascular endothelial cells.

TARGETING BMPR-II DEFICIENCY FOR THE TREATMENT OF PAH

Considering the genetic evidence indicating an important role for BMPR-II in the pathobiology of PAH,

several groups have begun to use this information to test the potential of next generation therapies

that directly target BMPR-II deficiency. Although not limited to the endothelium, a number of these

studies directly target pulmonary endothelial BMPR-II for their mode of action. These therapies are

directed towards various stages of BMPR-II signaling, including gene expression, translation, surface

expression and receptor degradation, as well as enhancing receptor activity through the delivery of

BMPR-II agonists. The various strategies can be grouped into three main approaches: (i) rescue of

mutant receptor function, (ii) enhancing the expression or longevity of the wild-type receptor or (iii)

enhancing BMP signaling through small molecules or recombinant BMP ligands. The published studies

examining these three approaches are summarized below and in Table 1.

Rescuing mutant BMPR-II receptor function: Over 400 different PAH associated BMPR2mutations

have been identified in all functional domains of the BMPR-II protein.6 These include missense

mutations within the extracellular domain, transmembrane region, and kinase region, as well as

nonsense mutations that encode premature termination codons (PTCs). Strategies designed to

enhance BMP signaling by rescuing the mutated copy of the BMPR2 gene can take one of two forms,

depending on the type of mutation present.

Chemical or pharmacological chaperones: Missense mutations can lead to the production of

misfolded BMPR-II through the replacement of critical cysteine residues that are essential to the folding
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of the extracellular domain within the endoplasmic reticulum (ER). These mutants can be targeted with

chemical chaperones that enhance the transport of the mutant protein from the ER to the cell surface.

Some chemical chaperones, such as glycerol, non-selectively stabilize the tertiary structure of the

mutant proteins and facilitate folding. Other compounds, including thapsigargin and sodium

4-phenylbutyrate (4-PBA), inhibit the interactions of the mutant protein with the chaperone proteins

responsible for their recognition, retention and degradation. In PAH, a panel of chemical chaperones,

including 4-PBA, glycerol and thapsigargin, were shown to promote folding and trafficking of mutant

BMPR-II protein to the cell surface. Since, in this case, the mutant receptor was still capable of normal

signalling, downstream Smad signalling was restored.21 While these results are promising, there are

several factors limiting the clinical application of these compounds for PAH. The PAH patient

population contains a large variety of missense mutations, only a subset of which encode mutations

that lead to the misfolding a receptor that is otherwise functional. Nevertheless, 4-PBA has been used

for other indications in man and may be a personalized approach in patients with these specific

mutations.

Suppression of nonsense mutations: In contrast to missense mutations, where the mutant protein is

produced and can be targeted for rescue, the mRNA transcripts produced by alleles bearing nonsense

mutations are typically subject to nonsense-mediated decay (NMD), resulting in reduced BMPR2mRNA

and decreased protein levels. The rescue of these mutations requires the use of compounds that

suppress or silence PTCs, allowing for the translation of mutant mRNA into full-length, functional

protein.22 A number of compounds belonging to the aminoglycoside family of antibiotics, including

gentamicin, have been shown to suppress disease-causing PTCs and partially restore protein function

in nonsense mutation-bearing cell culture models of multiple diseases, including cystic fibrosis,

Duchenne muscular dystrophy and PAH.23 However, the high doses required to achieve these

beneficial effects in vivo are also associated with renal toxicity and hearing loss, thus preventing the

widespread use of aminoglycosides in clinical applications.

More recently, high throughput screens have identified other compounds distinct from

aminoglycosides that possess the ability to effectively suppress PTCs without affecting the recognition

Figure 1. Simplified schematic summarizing the BMP signalling pathway and genes that have to date been

shown to be mutated in PAH and demonstrating that many of these mutations encode protein involved in BMP

signalling. Known mutations are numbered and in bold.
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of normal stop signals. One such compound, the small molecule Ataluren (PTC124), is currently in

phase III clinical trials for Duchenne muscular dystrophy. In PAH, Ataluren was shown to increase

BMPR-II protein levels and downstream signaling in primary cells from patients with nonsense

mutations in BMPR2 and SMAD9.24 These effects were accompanied by a restoration of normal

proliferation rates in hyperproliferative, patient-derived PAECs and PASMCs.

Enhancing BMPR-II surface expression

Inhibiting BMPR-II degradation: An alternative approach that has been explored for enhancing BMP

signalling involves extending the longevity of BMPR-II at the cell surface. BMPR-II is subject to

constitutive endocytosis by both clathrin and caveolae mediated pathways25 and is rapidly turned over

in endothelial cells. Notable protein loss is observed in these cells as early as 1 hour following the

blockade of new protein synthesis.26 BMPR-II can also be targeted for ubiquitination by Kaposi’s

sarcoma herpes virus K5 E3 ligase, and directed for lysosomal degradation.27 Each of these findings

highlights the lysosome as the primary route for BMPR-II turnover and points to lysosomal inhibition as

a promising target for preserving BMPR-II longevity and enhancing receptor-mediated signaling.

The 4-aminoquinolone, chloroquine, achieves lysosomal inactivation through the prevention of

vesicular acidification. Used for decades as a prophylactic antimalarial drug, chloroquine, and its less

toxic derivative hydroxychloroquine, have recently been repurposed for use in the treatment of

rheumatoid arthritis and cancer. In vitro, chloroquine was shown to enhance BMPR-II protein levels,

surface expression and downstream signaling in BMPR2 mutation-bearing endothelial cells.26 In vivo,

both chloroquine and hydroxychloroquine inhibited the development of pulmonary hypertension and

blocked the progression of established disease in the monocrotaline rat model.28 Although this

therapeutic effect was associated with restoration of BMPR-II protein levels, which are decreased in

monocrotaline-treated rats, it is likely that the beneficial effect of chloroquine administration may also

be linked to the inhibition of excessive autophagy, which has been linked to the aberrant proliferation

of vascular cells in PAH. Translation of hydroxychloroquine into a clinical therapy is facilitated by the

fact that the compound is inexpensive and presents acceptable toxicity or side effects at

therapeutically effective doses. Long-term treatment with hydroxychloroquine has been associated

with retinopathy in 0.5–1% of patients. However, this can be avoided with proper monitoring of

patients undergoing treatment.

BMPR2 gene therapy: Gene therapy techniques have also been explored in animal models of PAH as

a means to restore BMPR-II receptor levels. The targeted delivery of an adenoviral vector containing the

BMPR2 gene to the pulmonary vascular endothelium of rats substantially reduced the severity of

pulmonary hypertension in the chronic hypoxia and monocrotaline models of PAH.29,30 For these

studies, targeting of the adenoviral vectors to the pulmonary endothelium appeared to be a key feature

of therapeutic efficacy, as similar studies using aerosol vector delivery and a non-specific promoter

failed to demonstrate any measurable benefit in the monocrotaline rat model.31

Enhancement of BMPR-II downstream signalling: One alternative to enhancing BMPR-II receptor

expression or longevity involves enhancing signaling through the action of small molecules. Existing

PAH therapies, including prostanoids and sildenafil, have been shown to partially restore BMP

signaling in PASMCs bearing BMPR2 mutations and prevent the development of PAH in animal models

of disease.32,33 More recently, a high throughput screening approach demonstrated that the calcineurin

inhibitor, tacrolimus (FK506), potentiates BMPR-II-mediated signaling in endothelial cells, rescues

dysfunctional BMP signaling in endothelial cells from PAH patients with BMPR2mutations and reverses

established disease in multiple rodent models of PAH.34 Early clinical trials are currently underway to

establish the viability of this strategy as a treatment for PAH. However, this approach is likely to lead to

widespread and non-specific activation of BMP receptors, as well as having off target effects

independent of BMP signalling.

BMP9 AND BMP10 AS POTENTIAL THERAPIES FOR PAH

One of the most direct strategies for targeting BMPR-II deficiency in PAH involves the delivery of

exogenous BMP ligand to enhance signaling via the remaining functional receptor. Proof-of-concept

studies using patient-derived pulmonary arterial smooth muscle cells (PASMCs) have shown that the

addition of increasing concentrations of BMP ligand can overcome the functional defects associated

with BMPR2 mutation in vitro.14 However, identifying the appropriate BMP ligand or ligands to

selectively target the endothelium in vivo presents a significant challenge. The selective expression of
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ALK1 on the endothelium makes the ALK1 /BMPR-II complex an ideal target for exogenous ligand

therapy. Although ALK1 was originally thought to be an orphan receptor, two studies in 2007 identified

BMP9 and BMP10 as ligands that signal via complexes of ALK1 with either BMPR-II or type II activin

receptors (ActRII).35,36

Further examination of the receptor selectivity of these ligands has primarily focused on BMP9.

Endogenously, BMP9 activates ALK1 with high affinity (EC50 ¼ 50 pg/ml). BMP9 also activates ALK2

but with much a lower affinity in the ng/ml range.35–39 Biochemical analysis has also revealed discrete

differences in the type II receptor selectivity of BMP9 and BMP10. Although BMP9 and BMP10 both bind

to BMPRII, ActRIIA and ActRIIB, BMP9 exhibits a preference towards ActRIIB compared to BMPRII and

ActRIIA while BMP-10 binds to all type II receptors with similar affinities.40 In endothelial cells, type II

receptor redundancy means that loss of either BMPR-II or ActRIIA has a minor impact on the stimulation

of Smad1/5 phosphorylation due to compensation by the remaining type II receptor.37 Loss of both

receptors, however, abolished the Smad phopshorylation responses. Of note, some transcriptional

responses to BMP9, such as E-selectin and IL8 induction are more reliant on BMPR-II signaling as

ActRIIA does not compensate.37 This implies that there are BMPR-II-specific signals that may contribute

more than others to the pathology of PAH. Another feature of the BMPR-II selectivity of BMP9 relates to

the transcriptional regulation of the receptors themselves. BMP9 induces the expression of BMPR-II,

but not ALK1 or ActRIIA, suggesting that this ligand switches the balance of signaling in the endothelial

cell towards BMPR-II.35,37 Furthermore, this induction is ALK1-dependent and Smad1-dependent,

suggesting a feed forward signaling mechanism.37,41 It was recently shown that the therapeutic effects

of BMP9 include restoration of BMPR-II expression and signaling of BMPR-II in animal models of PAH.41

Therefore, BMP9 represents a therapy that promotes its key downstream signalling pathways partly via

rescue of the deficient BMPR-II expression that underlies the pathogenesis of PAH. A proposed

mechanism for this upregulation is shown in Fig. 2.

Based on our studies of BMPR-II dysfunction in PAH and the emerging role of BMP9 as a key

circulating regulator of endothelial function and positive regulator of BMPR-II expression, we recently

examined the therapeutic delivery of BMP9 to target endothelial dysfunction in PAH.41 In vitro, BMP9

prevents the enhanced apoptosis observed in BMPR2 mutation-bearing endothelial cells and

promotes monolayer integrity through the formation of tight junctions. In vivo, BMP9 prevents and

reverses established disease in a range of rodent models, including spontaneous disease in a mouse

model bearing a knock-in of the PAH-associated R899X-Bmpr2 mutation. From these studies,

we propose that BMP9 constitutes a potential therapy that overcomes the underlying endothelial

dysfunction that causes PAH and can overcome the deficient BMPR-II signaling that is a consequence

of the major genetic defect in most HPAH patients (Fig. 3). Our anticipation is that, by restoring the

balance in BMP signaling, this approach will redress the imbalance of other dysregulated pathways

that are targeted by current therapies.

Another theoretical approach to activate the endothelial ALK1/BMPR-II pathway would be to develop

a peptide mimetic that possesses BMP9/10-like function. An example of such an approach was

recently demonstrated for a peptide derived from BMP7.42 Although it is considered unlikely by some

that a small peptide mimetic would be able to substitute for a BMP dimer in the assembly of two type I

and two type II receptors, all of which are required for signalling,43–45 the BMP7 peptide mimetic was

shown to have similar effects to full-length BMP7 ligand in reversing established fibrosis in five mouse

models of acute and chronic renal injury.42 Although the findings of this study have been challenged by

researchers from several groups, synthetic peptides that specifically activate the endothelial

ALK1/BMPR-II pathway still represent promising potential drug candidates for treating PAH.

Since BMP9 exerts its beneficial effect on the endothelium in an ALK1-dependent manner,

recombinant BMP10 protein, which is the only other BMP ligand that signals through ALK1, could also

have a similar therapeutic potential for treating PAH. There are several advantages of BMP10-based

therapy. Firstly, unlike BMP9, it does not show osteogenic activity either in vitro signalling assays, or in

an in vivo bone-forming screen,46 and may therefore be potentially safer than BMP9 for treating

cardiovascular disease. Secondly, BMP10 binds to ALK1 and BMPR-II with higher affinities than BMP9,40

making it likely to be more potent and more specific for ALK1 and BMPR-II.

In spite of these advantages, there are still several hurdles to overcome before BMP10 can be

developed into a therapy for PAH. For example, the activity of circulating BMP10 in humans is still under

investigation. BMP10 is bound tightly by its prodomain, which inhibits BMP10 signalling activity when

applied in molar excess.47 It has therefore been proposed that BMP10, similar to TGFb, exists in a latent
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form in the circulation and requires an additional activation step to achieve bioactivity, such as

cleavage of the prodomain by BMP1.47 This hypothesis is further supported by the fact that, although

circulating BMP10 could be consistently detected and measured by ELISA48,49 and by pull-down

coupled with proteomics,50 early studies could not detect BMP10 activity in the circulation.48,51

However, one recent report was able to demonstrate BMP10 activity in mouse serum.49

A further question to be addressed is whether the presence of the prodomain on therapeutically

administered BMP10 is important for the stability and half-life of the ligand. A better understanding of

the physiology of BMP10 is required in vivo, since BMP10 is a much less well-studied BMP ligand and

most of the data are from embryos of mouse and zebrafish. The data on the role of BMP10 in adult

physiology and in PAH are limited, and such information will inform the development and testing of

BMP10-based drugs.

PHYSIOLOGICAL ROLES OF BMP9 AND BMP10

During embryonic development and into adult life, BMP9 and BMP10 are both expressed in a highly

tissue-specific pattern. BMP9 is expressed in the mouse fetal liver from E9.75–1049 and expression

remains high in the adult liver.52,53 The highest levels of expression are observed in mRNA from

intrahepatic biliary epithelial cells and hepatocytes.53 In contrast, BMP10 is highly expressed in the

Figure 2. Proposed mechanism for the restoration of cell surface BMPR-II expression and signalling using

exogenous BMP9 therapy. Left panel: Under normal conditions an individual possesses two wild-type alleles for BMPR2.

Under these circumstances BMP9 signalling involves signalling via the ALK1:BMPR-II ligand receptor complex and

activation of the Smad1/4 transcriptional complex.1 This promotes BMPR-II mRNA transcription and synthesis2 and

trafficking of newly-synthesised BMPR-II to the cell surface where it complexes with ALK1, which has been recycled via the

endosomal pathway.3 In the presence of BMP9, this feed forward pathway continues in an autoregulatory loop.4 Middle

panel: in patients with a heterozygous mutation in BMPR2 leading to haploinsufficiency, cell surface BMPR-II is reduced

and in its place, ActRII-A can form a complex with available ALK1 but this does not promote autoregulatory BMPR-II

production in response to endogenous concentrations of BMP9, which remain unchanged. The reduced signalling through

BMPR-II leads to reduced BMPR-II levels of the receptor at the cell surface. Right Panel: Administration of exogenous BMP9

to PAH patients with a heterozygous mutation in BMPR2, increases the circulating concentration of BMP9 which increases

signalling via the Smad1/4 complex to induce BMPR-II protein expression. This shifts the equilibrium of the

BMPR-II:ActR-IIA ratio in favour of BMPR-II associating with the available ALK1 and thus restores the autoregulatory

production of BMPR-II in response to BMP9, thus restoring normal endothelial BMP9 signalling.
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developing embryonic mouse heart, with much lower levels of expression detected in lung and liver.54

The expression of BMP10 is high in the trabecular myocardium between days E9.5 – E13.5, a period

that coincides with cardiac growth and chamber maturation.54 The expression of BMP10 becomes

restricted to the atria by day E18.5 and in adults, only the right atrium expresses BMP10.49,55

BMP9 is secreted and circulates at levels of 2–12 ng/ml in human plasma56 and 1.18–1.84 ng/ml in

human serum,51 based on cell-based luciferase bioassays. Plasma BMP9 levels in mice increase just

before birth and peak postnatally at levels of 6 ng/ml on Day 15 before declining to a steady state of

approximately 1.5–2 ng/ml.53 Similar to other BMPs, BMP9 is synthesised as a 429 amino acid

precursor (pre-pro-BMP9) comprising a 22 amino acid signal peptide, a 297 amino acid prodomain and

a 110 amino acid mature protein.53,57 The precursor is then cleaved by serine endoproteases to produce

a mature protein dimer (25 kDa) which can remain non-covalently associated with two pro-domains

(33 kDa each) forming a 100 kDa complex.53 Unlike the pro-regions of TGFbs and GDF8, which whilst

bound, inhibit their ligands in vitro and in vivo,58–61 the mature BMP9 dimer retains its biological

activity when in complex with the pro-domain.62,63 The bound pro-domain is proposed to enhance the

stability of BMP9 in vivo.62 Approximately 60% of the 100 kDa circulating pro-BMP9 complex is cleaved

and active, whereas the remaining 40% is unprocessed and may be activated through a local furin

cleavage.53

The role of BMP10 as a secreted ligand is more controversial, since some studies suggest that BMP9

is solely responsible for the ALK1-activating BMP activity in plasma.48,56 However, a recent study has

reported that BMP10 is present in mouse (0.5–2 ng/ml) and human (1–3 ng/ml) serum, suggesting

that BMP10 may be present in the circulation at physiologically important levels.49 Whether BMP10 in

the circulation is processed and circulates in a similar manner to BMP9 is not yet clear. However,

evidence supporting a functional role for circulating BMP10 has been revealed in zebrafish embryos,

showing that BMP10 is necessary for maintaining vascular stability and endothelial Smad signalling in

the vessels proximal to the heart.64 Loss of BMP10 phenocopies the cranial vascular abnormalities of

the Alk1 zebrafish mutants,65 although as discussed later, this differs from the phenotype of the Bmp10

knockout mouse.

The overlapping expression of BMP10 and Alk1 at about E8.549, 66 compared to the expression of

BMP9 in the liver at E9.75-10 has been argued as evidence for the developmental regulation of BMP10

signalling through Alk1.49 As BMP9 and BMP10 both activate ALK1, this may represent temporally

important roles of the ligands. For example, Alk1-/- mice die at E10.5 due to defects in angiogenesis,67

which may represent a failure of both BMP9 and BMP10 signalling, as discussed below. In comparison,

Alk1 þ /2 mice develop normally, but exhibit nosebleeds and vascular anomalies. This reflects the

pathology of ALK1 mutations causing HHT in man, although the disease penetrance is lower in

heterozygous mouse models.

Intriguingly, BMP9 knockout mice develop to adulthood without any overt phenotype,48 although

further analysis has revealed lymphatic vessel defects68 and delayed closure of the ductus

arteriosus.69 The lack of a severe vascular phenotype in BMP9-/- mice appears to be due to

functional redundancy with BMP10, confirmed by defective retinal vascularisation in BMP9-/- mice

Endothelium 

Media 

Adventitia 

Permeability Apoptosis 
Aangio- 

proliferation 

BMPR-II 

PAH 

BMPR-II 

PAH with treatment 

Integrity Survival Quiescence 

BMP9 
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Figure 3. Impact of BMP9 therapy on pulmonary endothelial cell function. In the lungs of PAH patients, loss of BMPR-

II leads to endothelial dysfunction, including increased vascular permeability, apoptosis and aberrant angioproliferation.

Therapeutic delivery of recombinant BMP9 promotes endothelial quiescence, survival and vascular integrity, while

simultaneously enhancing BMPR-II expression.
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when BMP10 is also neutralised.48,49 Of note, ALK1-Fc administration, which inhibits both BMP9 and

BMP10, phenocopies this sprouting defect.49 As circulating BMP10 levels are elevated slightly in

BMP9-/- mice, one might speculate that BMP10 may compensate for the absence of BMP9 in the

circulation.48

Consistent with the restricted cardiac expression, BMP10-/- embryos die around E9.5–E10.5 due to

hypoplastic cardiac development, probably as a result of reduced myocyte proliferation.55 Although

original reports reported an absence of vascular defects,55 recent data indicate that the dorsal aorta

and cardinal veins are fused in BMP10-/- mice.49 Furthermore, cloning of the BMP9 coding region into

the BMP10 knockout mouse does not rescue the cardiac defect whereas early vascular development

appears normal, suggesting that BMP10 mediates cardiac development via a mechanism that is

independent of the signalling capacity of BMP9.49 This could be due to differences in the selectivity for

type II receptors.49 Intriguingly, ectopic expression of BMP10 driven by the alpha-myosin heavy chain

promoter in the mouse myocardium leads to cardiac hypotrophy by 6 weeks of age.70 The level of

BMP10 expression achieved in the hearts was high, so it is not clear whether this represents a

physiologically relevant effect of BMP10.70 Table 2 summarizes the similarity and the difference

between BMP9 and BMP10 in physiology.

POTENTIAL SIDE EFFECTS OF BMP9/10 THERAPY

One potential concern associated with the delivery of exogenous BMP ligands is the activation of other

BMP receptors in non-endothelial cells, much of which is a dose-related phenomenon. It is therefore

important to consider the roles of BMP9 in tissue ossification/calcification, hepatic function and

tumour regulation.

Osteogenesis, chrondrogenesis and adipogenesis: The potent orthotopic bone-forming activity

of BMP9 may be a potential complication of BMP9 therapy in PAH. BMP9 induces the differentiation of

mesenchymal stem cells (MSCs - adult stem cells found in bone marrow) into osteocytes, chondrocytes

and adipocytes46 and is one of the most potent osteogenesis-inducing BMP ligands in MSCs.46,71–74

The osteogenic induction of bone marrow MSCs is mediated via both ALK1 and ALK275 and is reported

to involve BMP9 dependent induction of angiogenic HIF1a signaling.76

The osteogenic response to BMP9 in skeletal muscle has been achieved through several modes of

local ligand expression. Delivery of BMP9 into skeletal muscle via direct sonoporation,77 injection of

transfected MSCs78 or C2C12 cells46,79 or injection of an adenovirus engineered to express BMP946 all

elicited ectopic bone formation in muscle tissue. These processes are attributed to the differentiation of

local multipotent MSCs or osteoblastic progenitor cells.80–82 Ad-BMP9 stimulates lamellar bone in

mice by 3 months,83 although studies have reported evidence of calcification after 9 days of

exposure.84 It is notable that the majority of these studies involve a local inflammatory stimulus and it

appears that the heterotopic ossification response to BMP9 requires injury to skeletal muscle.85

Another important consideration would be the concentration of BMP9 achieved during therapeutic

administration. All of the above studies involved high concentrations of BMP9 or uncontrolled local

overexpression. Our recent study employed intraperitoneal dosing of BMP9 injections, and we

observed no evidence of heterotopic calcification after 4 weeks of daily intraperitoneal BMP9 injection,

or indeed 3 weeks of intramuscular injection.41 The concentration of BMP9 is likely to be important to

achieve therapeutic activation of BMPR-II/ALK1, but avoidance of ALK2 activation at higher

concentrations.

Table 2. Summary of similarities and differences between BMP9 and BMP10 in physiology

BMP9 BMP10

-/- mice phenotype Normal, lymphatic vessel defect Lethal, impaired cardiac development
Adult expression Liver, into circulation Right atrium
Circulating form and levels 2–10 ng/ml (by activity) Presence shown by ELISA and proteomics;

,300 pg/ml (ELISA)108 Only 1 in 3 reports can detect activity
Function Vascular quiescence factor Flow-dependent arterial quiescence
Bone-forming activity Highest among 14 BMPs Undetected
Endothelial cell signalling Controlling a similar set of target

genes with similar potency48

Affinity for ALK1/BMPRII Higher
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A recent study demonstrated that BMP9 promotes calcification of vascular smooth muscle cells in

the context of high phosphate levels.86 In this study, the authors propose ALK1 as the receptor

mediating this calcification, although this conclusion was derived from the use of an ALK1-Fc ligand

trap to inhibit BMP9 rather than molecular dissection of the receptor signalling in VSMCs. BMP9

stimulated calcification at concentrations of 5 ng/ml or greater, representing concentrations at which

BMP9 can stimulate both ALK1 and ALK2. In contrast, no calcification was observed at 0.5 ng/ml BMP9,

a concentration that would exclusively activate ALK1. Indeed, BMP9 and BMP10 might be expected to

exert endothelial-mediated vascular protective effects in atherosclerosis, since endothelial-specific

knockout of BMPR-II led to enhanced inflammation and atherosclerosis in ApoE-knockout mice.87

As BMP10 appears to lack osteogenic activity in muscle tissue, at least when transduced with an

adenovirus,46 BMP10 may represent an attractive therapeutic alternative to BMP9, providing that

BMP10 proves an effective therapy in animal models of PAH.

Liver function: The ability of BMP9 to stimulate hepatocyte proliferation is long established, being

one of the earliest observations of BMP9 function.88 Early studies demonstrated that BMP9 binds to

specific receptors in HepG2 cells,89 consistent with the expression of the low affinity type I receptor,

ALK2 and the type II receptors, BMPRII, ActRIIA and ActRIIB.90 Furthermore, both the HLE (human,

non-differentiated hepatoma) cell line and hepatic stellate cells express ALK1, indicating these cells

may exhibit high sensitivity to BMP9, though this has yet to be established.91,92 Of note, BMP9

stimulates canonical Smad signalling and proliferation in HepG2, Hep3B and HuH7 cells.93 The lowest

BMP9 concentration examined in this report was 1 ng/ml and the responses were completely inhibited

by low concentrations of the ALK2/3/6 inhibitor, LDN193189, implying these responses are not through

ALK1.93 The data from normal hepatocytes suggest that BMP9 may participate in liver repair but in

conditions of liver carcinogenesis, BMP9 may promote tumour growth as discussed below.

In vivo studies have highlighted a positive role for hepatic BMP9 in energy metabolism. BMP9

inhibits hepatic glucose production and activates the expression of key enzymes of lipid metabolism.63

Furthermore, recombinant BMP9 improved glucose homeostasis in vivo in diabetic and non-diabetic

rodents.63 However, these effects were observed at doses of BMP9 that were at least 1000 times higher

than those employed in our PAHmodels.41 Conversely, BMP9 is reduced in the livers of insulin-resistant

rats and administration of an anti-BMP9 antibody induced glucose intolerance and insulin resistance in

fasted rats.94 Consistent with this observation, administration of insulin in combination with high

glucose induced BMP9 expression in the livers of 12h-fasted rats.94 This promotion of hepatic insulin

sensing is associated with reduced expression of a rate-limiting enzyme of gluconeogenesis,

phosphoenolpyruvate carboxykinase (PEPCK) in hepatocytes.63

In addition to effects on the liver, BMP9 may regulate glucose utilization by skeletal muscle as it

activates of Akt2 kinase in differentiated myotubes.63 Akt2 is essential for the activation of

insulin-induced glucose uptake by muscle and Akt2 signalling is impaired in insulin resistance.95–97

In differentiated L6 myotubes, Akt2 is activated by Smad5 and this has been proposed as the

mechanism for BMP9 action,98 though a direct effect of BMP9 signalling through Smad5 was not

confirmed. Overall, the positive effect of BMP9 on hepatic glucose sensing may be of benefit in patients

given the perspective that metabolic dysfunction is a component of the pathophysiology of PAH.99,100

Tumour regulation: Variable effects of BMP9 on tumours and tumour cell growth have been

reported. For example BMP9 promotes proliferation of tumour-derived cell lines from ovary101 and

liver93 but induces apoptosis in prostate cancer cells102 and restricts osteosarcoma cell proliferation

and migration.103,104 Furthermore, neutralisation of BMP9 with Endoglin-Fc restricts colonic tumours in

mice.105 The key receptor promoting the proliferative response is ALK2 in ovarian and liver cancer cell

lines, shown through siRNA transfection and inhibition by low concentrations of the ALK2/3/6 inhibitor,

LDN193189.93,101 The tumour promoting and inhibitory responses are unlikely to be due to ALK1

activation, as prostate cancer cells do not express ALK1 yet BMP9 promotes apoptosis.102 In some

instances, the proliferation of tumour cell lines is promoted by autocrine BMP9 production.101

Thus the impact of BMP9 on tumour cells appears to predominantly via ALK2 and at high local

concentrations of BMP9.

In addition to effects on tumour cells, it is proposed that BMP9, and possibly BMP10, promote

tumour angiogenesis.106,107 The proangiogenic response to BMP9 appears to be context dependent, as

BMP9 is reported to promote proliferation and angiogenic processes in embryonic mouse endothelial

cells and transformed endothelial cell lines,106,107 but inhibits angiogenesis in primary adult

endothelial cell lines.35,36,41 The possible role of BMP9 in tumour angiogenesis has led to the
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development of Dalantercept, a soluble ALK1 ligand trap, as an anti-tumour angiogenesis therapy.

When applied clinically, the potential capacity of BMP9/10 to sustain tumour angiogenesis would need

to be balanced against the possible transformational effect of BMP9 in treating patients with

life-limiting PAH.

In summary, despite the potential challenges of enhancing signalling downstream of loss-of-function

mutations in BMPR-II there are now several approaches that could be taken forwards into the clinic as

novel therapeutic approaches in PAH. Of these, the direct enhancement of endothelial BMPR-II/ALK1

signalling with BMP9/10 offers an immediate solution that could be rapidly tested with the appropriate

cautions in patients with this life-limiting disease.
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