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INTRODUCTION

Idiopathic dilated cardiomyopathy (DCM) is a leading cause of heart failure characterized by an

enlarged ventricular cavity leading to systolic dysfunction. DCM patients have a considerable annual

mortality rate of 5–10%, with half of them being sudden unexpected deaths due to ventricular

tachycardia (VT) or ventricular fibrillation (VF).1 Although a multifactorial disease, DCM appears to be

inheritable in approximately 70% of cases.2,3 Causative gene mutations have been identified in a broad

range of genes coding for proteins with a variety of function, such as cytoskeletal, sarcomeric or ion

homeostasis related.4 Among the latter category, several mutations have been identified in Ca2þ

handling proteins in familial and sporadic DCM cases. An increasing body of evidence indicates that

abnormal intracellular Ca2þ handling underlies contractile dysfunction5,6 and contributes to ventricular

arrhythmogenesis in failing myocardium.7,8 A prime example is phospholamban (PLN), which is directly

involved in the uptake of Ca2þ by the sarcoplasmic reticulum (SR), on a beat-to-beat basis, thereby

regulating cardiac contraction and relaxation. PLN mutations have been directly associated with the

development of dilated cardiomyopathy and heart failure in patients and animal models.9 However,

modifier genes are thought to influence the clinical outcome both in PLN cases, as well as DCM cases in

general.10 We herein describe a DCM case which illustrates the complex genetic contribution to disease

development and progression.

CLINICAL REPORT

Clinical characteristics

A male patient aged 56 years presented for evaluation because of sustained ventricular tachycardia

episodes (Figure 1). He had a history of dilated cardiomyopathy diagnosed at the age of 40 years.

Patient also presented heart failure symptoms (NYHA class II) with left ventricular ejection fraction

(LVEF) of 25%. The ECG showed atrial fibrillation with frequent ventricular extra systolic beats (Figure 2).

The Echo revealed severe left ventricular dilatation and systolic dysfunction (Figure 3). An AICD was

implanted and the patient presented several ventricular tachycardia episodes terminating by AICD

firing (Figure 4) during the following years. Patient had also presented clinical deterioration with

advance heart failure symptoms and frequent hospital admissions especially 2-3 years after his

presentation. He finally died because of end stage heart failure at the age of 60.
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Genetics characteristics

High quality DNA was extracted from the peripheral blood of the patient, and was analysed by Next

Generation Sequencing using the HiSeq Illumina platform. One hundred and seventy genes previously

associated with heart disease or known to be involved in cardiac function were screened, and 163

genetic variants were detected in this patient. Among these, the vast majority were predicted to be

benign variants. However, there were three heterozygous variants of interest:

(i) a known pathogenic nonsense mutation (c.116T . G) in the PLN gene, that leads to a premature

stop codon (L39X) (Figure 6),9

(ii) a frameshift mutation (c.1495_1496insAGAC) in the C-terminus of CACNB2 (the beta subunit of

the voltage-dependent calcium channel Ca(v)1.2) (Figure 6).

(iii) a non-synonymous single nucleotide polymorphism (SNP) (c.9217C . T; p.L3073F) in laminin 2

(LAMA2), predicted to have a deleterious according to the Sorting Intolerant From Tolerant (SIFT)

bioinformatical algorithm, and a possibly damaging effect according to the Polymorphism

Phenotyping v2 (Polyphen2) algorithm (Figure 6).

(iv) a non-synonymous SNP (c.6082A . G; p.T2028A) in the Alstrom Syndrome 1 (ALMS1) gene,

predicted to have a deleterious effect according to SIFT.

Figure 1. Sustained monomorphic ventricular tachycardia episode recorded in patient via ECG.

Figure 2. Patient ECG revealing atrial fibrillation with frequent ventricular extra systolic beats.
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All four genetic variants were confirmed by targeted Sanger sequencing. High-throughput sequencing

is emerging as a powerful approach in revealing genotype-phenotype correlations of clinical

significance.11

DISCUSSION

Calcium homeostasis plays a critical role in normal cardiac function, and its impairment can lead to

DCM. The sarcoplasmic reticulum (SR) is the principal organelle that controls intracellular Ca2þ cycling

in cardiomyocytes, and thereby regulates cardiac contraction and relaxation. For the cardiomyocyte to

be in a steady state with respect to intracellular Ca2þ balance, the amount of Ca2þ released from the SR

into the cytoplasm must equal that re-accumulated by the action of SERCA uptake pumps. Cytosolic

Ca2þ is sequestered into the SR lumen by the Ca2þ-ATPase (SERCA2a) during muscle relaxation. The

stored Ca2þ is subsequently released from the SR through the ryanodine receptor channels to activate

myofibrillar contraction. The activity of SERCA2a is reversibly regulated by PLN, a 52 amino acid

phosphoprotein (Figure 5 and 6A). Dephosphorylated PLN interacts with SERCA2a and decreases the

Figure 3. Patient echo study revealing severe left ventricular dilatation (left ventricular end diastolic diameter:

70mm and left ventricular end systolic diameter 59mm) and severe systolic dysfunction (left ventricular ejection

fraction: 25%).

Figure 4. Patient AICD record revealing ventricular tachycardia episode that terminated by AICD firing.
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affinity of the Ca2þ-pump for Ca2þ, whereas phosphorylation of PLN through the beta-adrenergic

pathway relieves this inhibition and augments relaxation.12 It has been postulated that

phosphorylation of PLN at both S16 and T17 by PKA and CaMKII activation is the ultimate goal of

sympathetic stimulation in heart, and PLN mutations can be causative for DCM.13 Homozygosity for the

L39X mutation in PLN has been shown to lead to reduced PLN mRNA expression and absence of the

PLN protein.9

The phenotype of L39X mutation carriers in the PLN gene has been shown to vary considerably,

ranging from severe DCM to rare reports of hypertrophic cardiomyopathy (HCM) or even normal cardiac

function.9,14 In cardiomyopathies there are several reports of different mutations in a gene being

Figure 6. Protein structures and positions of mutations. A) The pentameric structure of PLN. B) A partial modelled

structure of CACNB2 (residues 88 to 474). C) A model of the fifth module of laminin G-like domain. The 3D

structures are represented as coloured cartoons, where the grey spheres indicate the key mutant residues.

Figure 5. Schematic of the cardiomyocyte structure components, including PLN, laminin 2 and Ca(v)1.2 (modified

from Fatkin et al Phys Rev 2012).
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associated with a different prognosis,15 as well as reports of rare cases where the same gene mutation

leads to different forms of cardiomyopathy.16 These observations can be attributed at least partly to the

interplay of different mutations, genetic variants, epigenetic and environmental factors, ultimately

modifying molecular, cellular and cardiac functions.

The patient described herein, represents the first PLN L39X DCM case developing sustained VT, a

major risk factor for sudden cardiac death.17 This is an unusual observation, considering that the

absence of PLN in mice suppresses stress-induced VTs in an established model of catecholaminergic

polymorphic VT.18 The development of malignant arrhythmias in the presented case study could

potentially be explained by the co-existence of the CACNB2 frameshift variant at the C-terminus, the

LAMA2 L3073F, and the ALMS1 T2028A variants. As demonstrated below, changes in the gene

sequence or expression levels of CACNB2, LAMA2, and ALMS1 have been previously associated with

DCM and/or ventricular arrhythmias.

The CACNB2 codes for one of the three subunits of the L-type calcium channel (LTCC), a voltage-

dependent calcium channel whose activation allows Ca2þ to enter the cardiomyocyte during the action

potential (AP) and constitutes the major Ca2þ entry pathway (Figure 5). Specifically, CACNB2 is the

dominant isoform known to play an essential role in the voltage dependence of LTCC.19,20

Consequently, mutations in CACNB2 can lead to electrical instability of the heart, and have been

described in patients with cardiac arrhythmia syndromes, namely short QT or early depolarization

syndromes.21,22 CACNB2 gene expression has been reported to be downregulated in DCM patients and

possibly associated to left ventricular dysfunction.23 The novel frameshift CACNB2 mutation described

herein, leads to the abolishment of its C-terminal subunit where important regulatory phosphorylation

sites are located.24 This could be associated with abnormal triggering of the ryanodine receptor (RyR)

opening that may lead to cardiomyocyte delayed after depolarization (DAD) and ultimately, arrhythmia

propagation. To visualize the mutational region of CACNB2, we used homology modelling for model

building as there is a lack of 3D structure for the protein. The template structure of the

voltage-dependent calcium channel beta subunit from rabbit was used to model the residues from 88

to 469.25 A loop region (470 to 476) was built to show the mutational position between N473 and P474

(c.1495_1496). The model structures were built in discovery studio (DS, Accelrys) and refined using

energy minimization with CHARMm force field (Figure 6B and 7A).

Unlike CACNB2, mutations in LAMA2 and ALMS1, have only rarely been associated with cardiac

arrhythmias. LAMA2 codes for the alpha-2 subunit, which forms the laminin 2 protein (also known as

merosin) when combined with the beta-1 and gamma-1 subunits, and the laminin 4 protein when

combined with the beta-2 and gamma-1 subunits. Laminins are found in the extracellular matrix, and

serve as a major component of the striated muscle cytoarchitecture (Figure 5). The majority of LAMA2

mutations have been associated with the development of muscular dystrophy, however, one rare

occasion also developed DCM with life-threatening ventricular arrhythmias.26 That patient carried

two different dominant mutations: a missense mutation in exon 29 (c.4405 T . C, p.Cys1469Arg) and

Figure 7. Sequence alignment for modeling structures. A) The calcium channel beta-2 subunit of human and

rabbit share 98% sequence identity from residues 88 to 469. B) The fifth module of laminin G-like module from

human and mouse share 88% sequence identity. The block box indicates the key mutational sequences that are

conserved among the species.
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a nonsense mutation in exon 31 (c.4645 C . T, p.Arg1549Stop). In our patient, the key residue was

located in Laminin G-like 5 domain (p. 2939 to 3120). Since there is no crystal structure available for

this region, we modelled the domain in DS using a template structure of the fifth laminin g-like module

of the mouse laminin alpha2 chain.27 The sequence of the mouse and human shared 88% identity and

importantly the key residue L3073 was conserved (see sequence alignment, Figure 7B). The modelled

domain was optimized by energy minimization using CHARMm force field in DS (Figure 6C).

Mutations in ALMS1 lead to Alström syndrome, a rare autosomal recessive genetic disorder

characterized by metabolic, endocrine and sensory impairment (blandness and deafness) as well as

liver, pulmonary and renal disease, over time.28 Approximately 60% of ALMS cases develop DCM, while

recently two siblings presented with central conduction system disease and cardiac rhythm

abnormalities.29 Although there are no reports on the role of ALMS1 in the heart, it is interesting to note

that ALMS1 silencing in kidney epithelial cells inhibited intracellular calcium influx.30

Overall, the combination of the CM causative L39X mutation in PLN, with the predicted pathogenic

genetic variants in CACNB2, LAMA2 and ALMS1 in DCM is associated with sustained VT.

WHAT HAVE WE LEARNED?

. This is the first report of a L39X mutation carrier presenting with sustained VT, in addition to

cardiomyopathy.

. These observations strengthen the evidence of one mutation contributing to multiple different

phenotypes, possibly under the influence of other genetic or environmental factors.

. Next generation sequencing is a powerful, unbiased, spherical approach to depict genetic

variants with a causative or modifying role.

. Three modifier gene candidates emerge that could be implicated in the development of

sustained VT in DCM patients, and specifically carriers of the PLN L39X mutation.
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