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ABSTRACT

Atrial fibrillation (AF) is a common disorder with a complex and incompletely understood

pathophysiology. Genetic approaches to understanding the pathophysiology of AF have led to the

identification of several biological pathways important in the pathogenesis of the arrhythmia. These

include pathways important for cardiac development, generation and propagation of atrial electrical

impulses, and atrial remodeling and fibrosis. While common and rare genetic variants in these

pathways are associated with increased susceptibility to AF, they differ substantially among patients

with lone versus typical AF. Furthermore, how these pathways converge to a final common clinical

phenotype of AF is unclear and might also vary among different patient populations. Here, we

review the contemporary knowledge of AF pathogenesis and discuss how derangement in cardiac

development, ion channel dysfunction, and promotion of atrial fibrosis may contribute to this common

and important clinical disorder.
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INTRODUCTION

Atrial fibrillation (AF), the most common sustained heart rhythm disorder in adults, is becoming

increasingly prevalent.1,2 It is projected that 12–16 million people in the US will have AF by 2050.3,4 The

lifetime risk of developing AF for Americans reaching 80 years of age is approximately one in four.5 The

risk of stroke in patients with AF increases five-fold with resultant adverse functional outcome and

,2-fold increase in mortality.6 More recently AF has been associated with increased risk for incident

myocardial infarction.7 Because of the global health burden of AF, identification of those at increased

risk may improve diagnoses and management. Traditional risk factors for AF include male gender,

advanced age, Caucasian race, hypertension, diabetes mellitus type II, valvular heart disease, and

other forms of underlying heart disease. Recently, some newer risk factors for AF have been identified

including the metabolic syndrome, obstructive sleep apnea, and obesity.8,9,10,11 In addition, multiple

studies support the contribution of genetic factors to AF susceptibility. Lone AF, which is AF in the

absence of underlying hypertension, valvular, ischemic or underlying structural heart disease, is

present in 10–30% of all AF patients.12 Given its clinical and genetic heterogeneity,13 AF is likely to

represent a final common phenotype with the convergence of multiple pathways.

Some of the dominant theories on AF pathogenesis include electrical and structural remodeling and

inflammation. In addition, common and rare genetic variants modulating cardiac development, altering

ion channel function and promoting atrial fibrosis are considered to play an important role in both

acquired and lone AF.14 An improved understanding of the pathophysiology of AF is critical as it is

a complex and highly heterogeneous disease. While our current armamentarium of treatments for

this disorder has recently expanded, it is still limited by a lack of efficacy, concerns about adverse

effects, and, by a rudimentary process for selecting specific strategies for individual patients. The

overarching goal of studying AF should be to improve treatment. Improving our understanding of AF by

examining different pathophysiological pathways that contribute to the final phenotype holds the

promise of a mechanism-based, individualized approach to treatment. Here, we review the substrate,

development, and progression of AF, based on different pathophysiological pathways, explore how

these pathways converge to promote AF, and highlight how these data can be used to optimize

treatment strategies.

CARDIAC DEVELOPMENTAL PATHWAYS

Normal cardiac development during embryogenesis plays an essential role in the development of AF

later in life. Recent positional cloning, candidate gene, and genome-wide association studies have

identified common and rare variants in genes important in cardiac development. Here, we will discuss

these in some detail.

Genome-wide association studies

In 2007, a genome-wide association study (GWAS) identified and replicated two common AF

susceptibility SNPs on chromosome 4q25 in Caucasians of European descent.15 While these SNPs are

intragenic, the closest gene is the paired-like homeodomain transcription factor 2 (PITX2) that is critical

not only for cardiac formation but also for pulmonary vein development. PITX2 is involved in left-right

signaling during embryogenesis; loss of function of PITX2 results in severe cardiac malformations

including right cardiac isomerism, double-outlet right ventricle, malformation of the great vessels and

paired sino-atrial node formation.16 In electrically-stimulated adult mice with structurally normal hearts,

PITX2 haploinsufficiency has demonstrated predisposition to AF.17 In atrial biopsy studies, PITX2

expression is severely diminished in AF patients compared to those with no history of AF.18 PITX2c

isoform deficiency in mice can result in right atrial isomerization, loss of suppression of a sinus node

development default pathway in the left atrium and loss of the pulmonary myocardium, predisposing

to AF.17,19,20

A recent meta-analysis of AF GWAS identified a novel locus on chromosome 1q24 that associated

with AF.21 The closest gene to this locus, PRRX1, encodes paired-related homeobox gene 1, a

transcription factor that is important for normal cardiac development. Defects in PRRX1 and PRRX2

cause abnormal development of the great vessels and pulmonary vasculature.22,23 Since the

pulmonary vein myocardial sleeve is a target during AF ablation,17,24 modulation of AF pulmonary

myocardial development may increase AF risk.
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Positional cloning and linkage analysis

In 2004 an autosomal recessive inheritance of AF was reported in a large family from Uruguay.25 The

disease was severe with AF occurring at the fetal stage or during infancy with associated sudden

cardiac death and ventricular arrhythmias. Linkage analysis mapped the locus to chromosome

5p13(arAF1)25 and a homozygous mutation (R391H) was identified subsequently in a nucleoporin gene

(NUP155).26 NUP155 is a major component of the nuclear pore complex (NPC) within the nuclear

envelope that facilitates the transport of DNA and mRNA from the nucleus to the cytoplasm.27

Heterozygous deletions in NUP155 in mice leads to spontaneous AF.26 In vitro analysis showed that this

mutation impaired nuclear permeability to NUP155 gene products.26 Recently, NUP155 was shown to

interact with histone deacetylase 4 (HDAC4) and the possibility that the phenotype may also be related

to altered transcriptional activity should be considered.28 However, the mechanistic link between the

NUP155 mutation and AF remains unclear. One postulated mechanism relates to a reduction in

nucleocytoplasmic transport due to NUP155 deficiency altering the expression of atrial genes and likely

influencing maturation of cardiac ion channel proteins, which may modulate action potential duration

(APD) and cause AF.29 Further studies are required in order to define the underlying mechanisms by

which NUP155 mutations cause AF.

Mayo clinic investigators identified a novel mutation in the natriuretic peptide precursor-A (NPPA)

gene on chromosome 1p36-p35, which encodes atrial natriuretic peptide (ANP), in a large kindred with

early-onset AF and atrial conduction disease in an autosomal dominant pattern of inheritance.30

Furthermore a Chinese study has reported an association between lone AF and a common NPPA

variant.31 These findings however could not be replicated in Americans of European descent.32 ANP

plays a central physiological role in regulating vascular tone and blood volume and induces diuresis,

natriuresis, and vasodilation by activating the intracellular second messenger cGMP.33 In addition

cardiac ion channels (sodium, potassium and calcium) are regulated by ANP through cGMP

signaling.34,35,36 ANP can promote AF either by shortening of the atrial action potential duration (APD)

and effective refractory period (ERP),37 or by autonomically-mediated shortening of the atrial

monophasic action potential (MAP) duration and the ERP in dogs.38 Therefore, it is hypothesized that

NPPA mutation can lead to AF. However, the precise mechanism(s) by which NPPA mutations cause AF

has not yet been fully delineated and studies in transgenic mouse models will provide further insights.

ION CHANNEL MODULATION PATHWAYS

Cardiac ion channels play an important role in cardiac function. Cardiac disease can alter ion channel

trafficking, with adverse consequence to both the electrical and mechanical function of the heart.39

Studies have identified various mutations in cardiac ion channel genes which may increase

susceptibility to AF.

Linkage and candidate-gene studies

In 2003 a mutation in KCNQ1 was identified in a Chinese kindred and linked to familial AF.40 KCNQ1

encodes for cardiac ion channel subunits involved in conduction of the delayed rectifier potassium

current (Iks) responsible for the terminal phase of the action potential plateau.41,42 Gain-of-function

mutation in KCNQ1 likely results in prolongation of atrial APD and resultant refractoriness causing

increased susceptibility to AF.40 Similar effect is postulated with mutations in KCNE2 which encodes for

subunits of Iks conducting ion channel and KCNJ2 which encodes the strong inward rectifier Kþ

channel protein Kir2.1.43,44 A gain-of-function mutation (E299V) in KCNJ2 is responsible for increased

susceptibility to atrial reentry and AF.44

A KCNE5 mutation has been linked with non-familial or acquired forms of AF. KCNE5 is expressed in

both atria and ventricles.45,46 Its gene product expressed in heterologous systems causes suppression

of Iks and is hypothesized to compete with the KCNE1 b subunit for the KCNQ1 a subunit resulting in its

down regulation47; thus making KCNE5 a possible AF candidate gene. Ravn et al. in 2008 reported AF

association with L65F which involves substitution of phenylalanine for leucine at position 65 in the

KCNE5.48

KCNA5 encodes for Kv1.5, a voltage gated potassium channel conducting ultra-rapid delayed rectifier

potassium current Ikur, which is an atrial-specific repolarizing current that may play a role in AF

pathogenesis.29 Loss-of-function mutations in KCNA5 have been identified in AF families,49,50 which

prolong the APD and trigger premature after depolarization in human atria, predisposing to
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stress-provoked triggered activity and AF.29 Our group discovered a rare KCNA5 variant in an AF family

with AF occurring at a young age. This variant is predicted to disturb a tyrosine kinase proline-rich motif

important in regulating IKur. This mutation causes the channel to be resistant to kinase with reduction in

the wild type current. Thereby, these changes might cause AP shortening for the development of AF.51

Another potassium channel gene important for atrial and ventricular repolarization is KCNH2 which

encodes for the rapid delayed rectifier current Ikr. Mutations in the KCNH2 are associated with a higher

incidence of AF.52

Rare non-synonymous variants in the b-subunits of cardiac sodium channels (SCN1B and SCN2B)

have been found in AF patients.53 These mutations occur in the extracellular domain, which regulate

the sodium channel gating and cell surface expression.54 Reduced sodium current resulting from

mutations in SCN1B and SCN2B can generate AF –prone substrate through multiple mechanisms such

as shortening of refractoriness and slowing of conduction.53 Furthermore, loss-of-function mutations in

the b-subunits can cause a Brugada-type AF.53

Cardiac L-type calcium channel mutations involving the a1- and b 2b-subunits have been linked to

the Brugada syndrome and other inherited cardiac channelopathies.55 CACNA1C gene on chromosome

12p13.3 forms the a1c subunit of the L-type calcium channel (Cav1.2) which is the binding site for all

currently available calcium channel blockers56,57 whereas CACNB2 gene encodes the b-subunit Cav b2.

Abnormal intracellular calcium handling may play a crucial role in AF initiation and continuation.58,59

A higher rate of spontaneous sarcoplasmic reticulum calcium release is found in atrial myocytes of

patients with chronic or paroxysmal AF, which is considered pro-arrhythmogenic.60,61 About 20% to

30% cases of Brugada syndrome and short-QT syndrome are known to have associated AF.62,63

Genome-wide association studies

Multiple AF related loci affecting ion channels have been identified in recent GWASs. Some of the

important associations include PITX2, PRRX1, SCN5A, SCN10A, KCNN3 and CAV-1.21 Both PITX2 and PRRX1

play a key role in pulmonary myocardial development.19,23 Although the precise mechanism(s) by

which these AF loci increase AF susceptibility is unclear, an up-regulation of KCNQ1 results from PITX2

suppression in transgenic mice, in addition to differential expression and distribution of the

inward-rectifier potassium Ik1 current.
18,64,65,102 GWAS in individuals of European descent have

identified a genomic region related to AF on chromosome 1q21 (KCNN3).66 KCNN3 gene encodes for

small conductance voltage-independent calcium-activated potassium channels that are expressed in

various excitable tissues including the brain67 and the heart.68,69 KCNN3 channels are distributed in the

atria and the ventricles and have a prominent role during the late phase of cardiac action potential.68,69

Other members of the family expressed predominantly in the atria are KCNN1 and KCNN2. Li et al.

observed APD prolongation and an increased number of early after depolarization in the atrial

myocytes of KCNN22/2 knockout mice. Atrial arrhythmias, mainly pacing-induced AF, were more

frequent in both heterozygous and homozygous KCNN2 mice.70 Variation in either KCNN2 or KCNN3

may modulate ion-channel function, as in vitro both subunits exhibit co-assembly in channel

complexes.71

Caveolin-1 gene (CAV1) on chromosome 7q31 encodes a signal transduction cell-membrane protein

expressed selectively in the atria.72 The CAV1 protein by co-localizing, negatively regulates the activity

of KCNH2 protein, a potassium channel involved in cardiac repolarization that has been linked to AF.52

Dilated cardiomyopathy has been reported in CAV1 knockout mice.73 Mutations in HCN4, on

chromosome 15q24, have shown association with dysfunction of the sinus node. HCN4 encodes the

potassium-sodium hyperpolarization-activated cyclic nucleotide-gated channel which constitutes the

predominant sino-atrial node pacemaker channel.74,75

SCN5A and SCN10A cardiac sodium channel related genes are associated with AF. The voltage-gated

sodium channel Nav1.5, involved in conduction of the inward sodium current INa responsible for

initiating cardiac AP, is encoded for by SCN5A.76,77 Screening for SCN5A variants in a large AF cohort

found mutations in 5.9% of those with AF.78 AF has been associated with loss-of-function mutations in

SCN5A, in addition to dilated cardiomyopathy, sinus node dysfunction, and/or conduction disorder.76

The H558R polymorphism in SCN5A has also been linked to incidence of AF.79

SCN10A encodes the Nav1.8 channel and has been associated with PR and QRS duration variability,

atrioventricular and intraventricular conduction velocity.80,81 The Nav1.8 channel is known to be

expressed in the dorsal root ganglia82,83 and the retina.79 The functional characterization of Nav1.8

current in heterologous expression experiments indicate that the current activates much more slowly
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than does Nav1.5 current, and this difference may in turn contribute to variable cell-to-cell charge

transfer that underlies fast conduction in heart.84

INFLAMMATION AND ATRIAL FIBROSIS PATHWAYS

In 1997, Frustaci et al. reported myocarditis like histological changes in the atria of lone AF patients,

supporting involvement of inflammation in the pathogenesis of AF.85 The high incidence of AF after

cardiac surgery and the role of anti-inflammatory drugs in preventing AF support the association of

inflammation with AF.86,87 Higher baseline levels of C-reactive protein (CRP), an acute-phase protein,

have been linked to future development of AF, and patients with AF have been shown to have elevated

levels of CRP.88,89 It has also been postulated that an elevated CRP level may be an outcome of the

underlying cardiac pathology rather than a marker of AF itself.90 In conditions such as oxidative stress

and ischemia, which promote apoptosis and energy depletion, CRP may initiate AF by disrupting the

normal structure of cell membrane.91

Atrial fibrosis may play an important role in both initiation and maintenance of AF.92,93 Induced atrial

fibrosis in animal studies has shown a greater tendency for developing AF.94,95,96 Atrial tissue

specimens from patients with AF have been shown to have increased fibrosis.97,98 Fibrosis may induce

AF by premature or burst atrial pacing that in a normal heart will not lead to AF.95,99 Severity of left atrial

(LA) fibrosis correlates with favorable treatment outcomes in AF patients.100,101

There is substantial evidence suggesting the potential of multiple common AF-susceptibility variants

to modulate atrial fibrosis. In addition, all these variants are likely to mediate their effect not only by

regulating atrial conduction slowing, but also by modulating electrical remodeling that promote AF,

such as shortening of the ERP.

Genome-wide association studies

PITX2 encodes a transcription factor critical for left-right patterning in the atria, suppression of

sino-atrial node formation on the left, and development of the pulmonary myocardium during

embryogenesis. Given its critical role in cardiac development, its dysfunction may be predicted to

cause atrial structural remodeling. In addition, it has been shown that PITX2 is expressed in adult

human hearts, especially in the left atrium, suggesting that this transcription factor plays a

physiological role beyond cardiac development.102 Chinchilla et al. found that PITX2c2/2 mutant

mice had enlarged cardiac chambers, increased fibrosis seen on histological staining of the

ventricles, and increased expression of collagen precursor genes in the atria.18 In a separate study,

PITX2cþ/2 mice were found to have structurally normal hearts, however differential expression of

genes involved in Wnt signaling (a key fibrosis signaling pathway) was demonstrated in microarray

analysis.102

Another locus associated with AF in a recent meta-analysis of AF GWAS was at 7q31 in CAV1. This

gene encodes a cellular membrane protein caveolin-1, which is expressed in the atria. CAV1 is

associated with myocardial fibrosis, and its variants have been associated with pulmonary

hypertension.103 CAV1 knockout mice display dilated cardiomyopathy.73 Caveolin-1 associated lipid

rafts internalize TGF-b receptors resulting in inhibition of TGF-b signaling.104

While the role of several other variants associated with AF in GWAS is unknown, a growing body of

evidence implicates atrial fibrosis as a plausible link between these genes and AF. The transcription

factor zinc finger homeobox 3 (encoded by ZFHX3) is a tumor-suppressor gene that by associating with

runt-related transcription factor 3 (RUNX3) translocates in response to an important fibrosis mediator,

TGF-b.105,106 SYNPO2L knock-down in zebra fish resulted in abnormal skeletal and cardiac muscle

development and function. The gene encodes an actin-binding protein which is a component of the

cytoskeleton and is expressed in the heart.107 Nesprin-2, encoded by SYNE2, in combination with

nesprin-1, creates a network that links the actin cytoskeleton and nuclear membrane structures to the

nucleoskeleton in muscle. Alpha-catenin’s interaction with emerin and nesprin-2 regulates the

Wnt signaling-dependent transcription, which is a fibrosis related pathway in the heart, lung and

kidney.108,109 The homeodomain transcription factor encoded by PRRX1 is expressed in the developing

heart, especially the connective tissue. It is involved in normal pulmonary development and is linked

to fibrosis in the lungs and liver.110,111 A higher expression of C9ORF3 is shown in TGF-b stimulated

normal and scleroderma fibroblasts.112
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Linkage analyses

A possible pathophysiological mechanism of NPPA variants in AF may involve exposure to higher levels

of mutant ANP causing structural changes promoting atrial fibrosis.30 In fact, a missense mutation in

NPPA was recently identified in four families in Northeast Italy with the clinical phenotype of atrial

myopathy, massive biatrial enlargement, and atrial standstill.113

INTERTWINING OF PATHWAYS

Emerging evidence suggests that development of AF might be predicated on the interaction between

clinical and genetic factors. In this proposed ‘two hit’ or ‘multiple hit’ paradigm [Figure 1], deleterious

changes in confluent pathways might predispose patients to develop this complex clinical disorder. We

previously studied 11 AF families in which we found 42 mutations in AF candidate genes. When affected

individuals were also genotyped for 4q25 SNPs, a striking interaction between candidate gene

mutations and 4q25 variants emerged. Zero out of 13 patients who had the wild-type 4q25 allele

developed AF prior to the age of 50, whereas 21 of 29 who had 4q25 variant alleles developed AF

before age 50 (P ¼ 1.12 £ 1025).114

A frameshift mutation in NPPA was previously linked to familial AF. Functional characterization

revealed that the mutant ANP was associated with shortened APD and ERP, suggesting that ion

channel modulation was the pathophysiological link with AF. In addition, several studies have

implicated NPPA mutations in cardiac structural changes. NPPA knock-out mice were found to develop

left ventricular hypertrophy (LVH), even when fed a normal diet.115 A separate mouse study found that

NPPA knock-out mice developed LVH and had a several-fold increase in heart interstitial collagen

volume compared with wild-type littermates.116 In humans, as discussed above, a missense mutation in

NPPA was linked to a familial syndrome of atrial standstill and extreme biatrial enlargement, a striking

example of an atrial myopathy with relative sparing of the ventricles.113 Thus, genetic variants in NPPA

may affect all three pathways that can potentially lead to the clinical phenotype of AF: ion channel

modulation as evidenced by changes in APD and ERP, cardiac development as NPPA is part of the

signaling pathway for PITX2 and atrial fibrosis [Figure 2a].

Variants in CAV1 were associated with AF in GWAS. The gene encodes a membrane protein thought to

play a role in cardiac structural changes and fibrosis. A frameshift mutation in CAV1 was found in

affected members of a large family with primary pulmonary hypertension.103 Furthermore, CAV1

Figure 1. ‘Double hit’ hypothesis proposes that a combination of genetic and acquired risk factors predispose to

the development of atrial fibrillation.
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knockout mice display dilated cardiomyopathy.73 However, CAV1 is also thought to play a role in

cardiac electrophysiology. CAV1 SNPs have been associated with longer PR interval (a known AF risk

factor) in GWAS. Interestingly, CAV1 was shown to co-localize with KCNH2, the channel encoded by

HERG (also called KCNH2) which is responsible for the Ikr current. A CAV1 knock-down model resulted in

decreased Ikr current, whereas overexpression of CAV1 resulted in increased current.
117 KCNH2 is itself a

gene associated with AF in GWAS.21 Therefore, CAV1 seems to play a dual role in the pathophysiology of

AF, by modulating cardiac fibrosis and ion channel function.

PITX2, a homeobox transcription factor, has been associated with AF15 and has a complex role in

cardiac development most importantly left-right signaling during embryogenesis.16 Experiments in

mice models with PITX2c deletions have revealed atrial enlargement, increased atrial expression of

collagen precursor genes and increased fibrosis.18,102 Electrophysiological findings in similar mice

models with PITX2c deletions included complete AV block, AF, a more depolarized atrial resting

membrane potential, and a lower amplitude atrial action potential. In addition decreased atrial

expression of SCN5A, SCN1B, KCNJ2, KCNJ4, and KCNJ12, was observed as compared to control mice.102

Thus, PITX2 seemingly plays a vital role in AF pathophysiology with contributions to cardiac

development, electrical remodeling, and atrial fibrosis [Figure 2b].

IMPLICATIONS FOR TREATMENT OF AF

Recent advances in catheter ablation, hybrid surgical and catheter ablation, and new oral

anticoagulants have improved treatment options for patients with AF. However, there is much room for

improvement especially in selecting individualized treatment strategies for patients that will maximize

efficacy and minimize risks. For example, an evidence-based strategy to select patients for treatment

with rate control therapy, AADs, and invasive treatment does not exist and is sorely needed. Improved

understanding of the genetic mechanisms that underlie AF in individual patients should lead to

personalized strategies to maximize efficacy and minimize adverse events. The Ikr blockers sotalol and

dofetilide maintain sinus rhythm by prolonging repolarization and increasing refractoriness, thus

abolishing the excitable gap necessary for arrhythmia propagation. These agents may be particularly

effective in maintaining sinus rhythm in AF patients who harbor potassium channel gene variants.

Conversely, sodium channel-blockers such as flecainide and sotalol, which abolish reentry by slowing

conduction, might cause ventricular pro-arrhythmias in AF patients with loss-of-function sodium

channel variants. These important considerations have not been tested in human pharmacogenomic

studies.

Many patients with AF are treated with AV nodal blockers to prevent tachycardia and its associated

complications. Mounting recent evidence from pharmacogenomic studies suggests that these agents,

particularly beta-blockers, are less effective in patients with variants in the beta-adrenergic signaling

Figure 2. (a) Variants in NPPA are postulated to modulate ion channel function, cardiac development and atrial

fibrosis supporting the idea that the convergence of multiple pathways is important in the pathogenesis of

the AF. (b) Cardiac development, electrical remodeling and atrial fibrosis are important contributors to AF

development that are mediated by PITX2. This further supports the heterogeneity of AF pathogenesis.
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pathway. Several studies have shown that common SNPs in the beta-adrenergic receptor genes ADRB1

and ADRA2Cmodulate the response to beta-blocker therapy in HTN118,119,120 and HF.120,121,122 We tested

whether the polymorphisms in the ADRB1 gene are associated with response to rate control therapy in

543 patients in the Vanderbilt AF registry. The Arg389Gly variant showed association with adequate

rate control (adjusted OR 1.42) as defined by the AFFIRM criteria.123

Several recent studies highlight the challenges of pharmacological and catheter-based rhythm

control strategies in AF patients with 4q25 (PITX2) variants. Our group showed that AF patients with the

wild-type allele at the 4q25 SNP rs10033464 were significantly more likely to respond to Class I and III

AADs as compared with carriers of the variant allele (OR 4.7, P ¼ 0.001).123 Husser et al. demonstrated

that carriage of 4q25 variants was associated with post-catheter ablation recurrence of AF.124 In the

Vanderbilt AF registry, 4q25 variants were associated with unfavorable outcomes after catheter

ablation, with shorter time to recurrence of atrial arrhythmias (survival time ratio 0.76) that was

especially evident for patients with left atrial diameter .5 cm.125 A similar outcome was shown after

patients underwent DC-cardioversion.126 Collectively, these findings highlight the importance of the

4q25 variants in creating an atrial pro-arrhythmic substrate due to deleterious electrical and structural

remodeling, with subsequently difficult-to-treat sub-type of AF.

CONCLUSIONS

Data from linkage analyses in AF families, candidate gene and GWA approaches and animal models,

have provided important insights into the underlying pathophysiology of this complex and

heterogeneous disorder. Despite these advances however, AF persists as a common and the most

challenging arrhythmia to treat in clinical practice. Here, we proposed viewing AF through the lens of

biological pathways important in the pathogenesis of the arrhythmia. This perspective will not only

improve our understanding of disease onset and progression, but inform us on how to best

individualize therapy to maximize efficacy and minimize adverse effects.
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