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INTRODUCTION
A large number of clinical trials over the last 30 years have firmly consolidated the
importance of lowering low density lipoprotein cholesterol (LDLc) in the prevention of
cardiovascular diseases (CVD) and its associated devastating sequelae.1 While healthy
diets and exercise are highly recommended to lower LDLc levels, in many individuals with
high baseline levels of LDLc, this is not sufficient to bring levels down to recommended
target values in order to prevent recurrent coronary heart disease and cardiovascular
complications. This is especially true for patients at high risk of premature cardiovascular
death and disability, including those with familial hypercholesterolaemia (FH). FH is a
very common inherited disease – affecting at least 30 million people worldwide, with an
overall incidence of 1:200 globally2 – of whom ≤ 1% have been diagnosed. The advent
of HMG-CoA reductase inhibitors, also known as ‘‘statins’’, and their first application
to hypercholesterolemic patients over 30 years ago, has revolutionized the treatment
of FH patients and resulted in substantial lowering of LDLc. In addition, cholesterol–
lowering drugs, such as ‘‘ezetimibe’’ that blocks cholesterol absorption from the gut by
inhibiting the Niemann-Pick C1-like 1 (NPC1L1) transporter, have also been successful and
a 7-year IMPROVE-IT trial revealed that a ‘‘simvastatin-ezetimibe’’ combination resulted
in an incremental lowering of LDLc levels and a modest 2% improved cardiovascular
outcomes.3 Therefore, it became clear that additional treatments are needed to
substantially decrease LDLc and efficiently protect against CVD.

In 2003, the identification of the proprotein convertase subtilisin-kexin # 9, and
the genetic evidence of its up-regulation of the levels of circulating LDLc4,5 via the
enhanced degradation of the LDL receptor (LDLR)6, was an unexpected and welcome
addition to the armamentarium of drug targets aimed to safely lower LDLc to levels
never achieved before.7,8 Indeed, the discovery of PCSK9 and its induced-degradation
of the LDLR revolutionized the field of LDLc-regulation. Amazingly, knowledge went from
bench-to-bedside in less than nine years. A new PCSK9-targeted class of medicine is
emerging, representing the biggest weapon against heart disease since the development
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of ‘‘statins’’. The current crop of PCSK9 inhibitors are injectable monoclonal antibodies
(mAb) to treat patients who cannot tolerate statins, or whose LDLc is not controlled by
drugs. Food and Drug Administration approval of the first of a new class of therapeutics
(PCSK9 mAb) was achieved in 2015. The present review will briefly describe the
properties of PCSK9, our current understanding of its biology and intracellular trafficking,
and then discuss the status of the various approaches that have been proposed to lower
the levels of PCSK9.

THE PCSK -FAMILY OF PROPROTEIN CONVERTASES SUBTILISIN-KEXIN TYPES
It became clear from the mid-1960s that many eukaryotic secretory proteins were cleaved
by proprotein convertases (PCs) to generate active peptide/protein products from their
original inactive precursors.9,10 Cleavage occurred at specific exposed single or paired
basic amino acid sites within the consensus motif (K/R)-X0-6-(K/R)↓, where Arg is the
preferred residue at the P1 cleavage site over Lys (Figure 1).11 This involved a variety
of precursors of polypeptide hormones, growth factors, receptors, enzymes, adhesion
molecules, and even cell surface proteins from infectious viruses, parasites and bacteria.
Such widespread precursor activation was found to occur in most species in both
eukaryotes and even in some prokaryotes. However, it subsequently became apparent
that such limited cellular proteolysis can also inactivate specific bioactive proteins
(Figure 1).12 It took more than 15 years of intensive research by a number of teams in
both North America and Europe to hunt for the elusive PCs, which were estimated to
be present at <100-fold lower concentration than their substrates. Using powerful yeast
genetics, the first successful identification of a PC was reported in 1984 for the processing
of the precursor of α-mating factor (Figure 2).13 The enzyme, named ‘‘Kexin or Kex2p’’,
turned be an ancient serine protease related to the bacterial family of subtilisin-like
proteases.14,15 The ability of Kexin to precisely process mammalian precursors at the
expected physiological sites supported the hypothesis that Kexin is a prototype of the as
yet unidentified mammalian proprotein convertases.16 The first glimpse of the properties
of such mammalian proteinases was obtained in 1988 upon analysis of a human

Figure 1. Schematic representation of the limited proteolysis of secretory precursor proteins.
Notice that such PCSK-generated cleavages can either activate the cognate precursor by releasing
bioactive products or inactivate it by removing bioactive moieties.
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Figure 2. History of the discovery of the proprotein convertases. The first discovery of Kexin in
1984, led the way to the identification of its 9 mammalian homologues from 1990–2003.

insulinoma tumor highly enriched in both hormone and its processing proteinases.17 It
turned out that two such convertases (type 1 and 2) were needed for the generation of
active human Insulin from its inactive precursor proInsulin. However, it was not until the
advent of gene and cDNA cloning and expression that in 1990 the first 3 members, PC1,18
PC2,18,19 and Furin20 of the PC-family were finally identified, cloned and their activity
validated in cells (Figure 2). The genes coding for these enzymes were named PCSK1,
PCSK2 and Furin (Figure 3). From 1990–1997 four more convertases were consecutively
identified and cloned, giving a total of seven basic-residue-specific PCs (Figure 3).

The above enzymes differ in their tissue expression and subcellular localization.21
Briefly, the soluble PC1 and PC2 are found exclusively in dense-core secretory granules in
endocrine and neural tissues, and are responsible for the activation of most polypeptide
hormones.12 The type I-membrane-bound Furin and PC7 are ubiquitously expressed,11
and sometimes share similar precursor substrates such as those of Sortilin and Brain
Derived Neurotropic Factor (proBDNF).22 The soluble PC5A and PACE4 are widely
expressed and often activate cell surface precursors, such as cell surface receptors and
growth factors.12,23 Animals completely lacking the convertases mouse Furin, and human
and mouse PC5 have severe developmental defects, and they die before birth.11,24,25 In
contrast, mice lacking PC7 are quite healthy, and are anxiolytic and novelty seekers.22 The
various physiological and pathological functions of these 7 basic-residue-specific PCs
have been extensively reviewed elsewhere11,12,23,26 and will not be examined any further
in this paper.

In our search for other members of the PCSK -family, in 1999 we identified an eighth
member that we called subtilisin-kexin isozyme 1 (SKI-1), because it was able to cleave
proBDNF at a non-basic site within the recognition motif R-X-L/V/I-X↓ (Figure 3).27,28
This is also a type-I membrane bound protease best related to the pyrolysin family of
subtilases29. Independently, it was also discovered that SKI-1 (also called site 1 protease)
was responsible for the processing of various membrane-bound transcription factors,
such as sterol regulatory element binding proteins (SREBPs)30 and the ER stress sensor
ATF6.31 Therefore, SKI-1/S1P plays a major role in the regulation of lipogenic genes,
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Figure 3. Schematic representation of the primary structures of the human proprotein
convertases. The kexin-like basic amino acid (aa)-specific proprotein convertases, pyrolysin-like
subtilisin kexin isozyme 1 (SKI-1; encoded by the MBTPS1 gene) and proteinase K-like proprotein
convertase subtilisin kexin 9 (PCSK9) are individually grouped to emphasize their distinct subclasses.
The various domains and N-glycosylation positions are emphasized, along with the primary (depicted
using light grey arrows, and a light grey double arrow for SKI-1) as well as the secondary autocatalytic
processing sites (depicted using dark grey arrows). The presence of a signal peptide, a prosegment and
catalytic domain is common to all convertases that exhibit the typical catalytic triad residues Asp, His and
Ser, as well as the Asn residue comprising the oxyanion hole (Asp for PC2). The carboxy-terminal domain
of each convertase contains unique sequences regulating their cellular localization and trafficking. Thus,
PCSK9 exhibits a Cys-His-rich domain (CHRD) that is required for the trafficking of the PCSK9–LDLR
(low-density lipoprotein receptor) complex to endosomes and lysosomes. (modified from11).

including those of LDLR and PCSK9, as we shall see later. Because of these activities,
the gene for SKI-1/S1P is now called Membrane-Bound Transcription Peptidase Site
1 (MBTPS1). Our extensive studies of the properties of this enzyme revealed that it
undergoes a very unique autocatalytic activation, which is quite different from those of
the other seven basic-residue specific PCs.28,32,33

In addition, this unique enzyme was also reported to activate the phosphorylation of
mannose residues in proteins destined to lysosomes, since it is required to activate the
α/β-subunit precursor protein of the GlcNAc-1-phosphotransferase forming mannose 6-
phosphate (M6P) targeting markers on lysosomal enzymes.34 Interestingly, this activity
is independent of the lipogenic transcription control by cholesterol and fatty acids.35
SKI-1/S1P was also shown to be critical for neuronal axonal growth, 36 and for bone
osteoblast mineralization.37 Thus, SKI-1/S1P may have other unsuspected functions in
specific tissues that are independent of SREBPs or ATF6. Caudal regression syndrome
(sacral agenesis), which impairs development of the caudal region of the body, occurs
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with a frequency of about 1 live birth per 50,000 newborns, although this incidence rises
to 1 in 350 infants born to mothers with gestational diabetes.

The complete knockout of the mouseMbtps1 is embryonically lethal at very early
developmental stages. Thus, to better understand the role of SKI-1/S1P in osteogenic
differentiation and skeletal development, we used a tissue-specific approach to delete
the expression of SKI-1/S1P in chondrocytes. This conditionalMbtps1 loss-of-function
mouse model exhibits phenotypic changes localized to the lumbar/sacral vertebral
region (decreased vertebral number, vertebral fusion, and kinky tail) that mimic those
in caudal regression syndrome, suggesting that loss-of-function mutations inMbtps1may
cause the etiology of this disease.38

THE DISCOVERY OF PCSK9 AND ITS GENETIC RELATIONSHIP TO LDL
During an exhaustive PCR-based homology search to the PCSKs, in mouse,
rat and human cell lines in 2002 (reported in early 2003), 5 we cloned a novel cDNA
sequence encoding a 24–25% identical catalytic subunit (260 aa) to the subtilases
SKI-1/S1P, PC7, and tripeptidyl peptidase II. Using a protein BLAST program
(www.ncbi.nlm.nih.gov/BLAST), similar sequences were identified in patented databases
(Millennium Pharmaceuticals, Cambridge, MA, patent no. WO 01/57081 A2; and Eli
Lilly, LP251 patent no. WO 02/14358 A2). The sequence identified by Millennium was
obtained following serum deprivation in primary cerebellar neurons leading to the
development of apoptosis. Thus, the gene product was originally called Neural Apoptosis
Regulated Convertase 1 (NARC-1).5 Upon inspection of the putative protein sequence
we immediately realized that it encoded a new ninth member of the PCSK -family of
proprotein convertases (now called PCSK9) and showed that it localized to human
chromosome 1p32. Not knowing what the function of the enzyme was, we first defined
its tissue and cellular distribution and showed that it was highly enriched in the adult
liver, small intestine, kidney cortex and cerebellum (Figure 4).5 In situ hybridization and
Northern blot analyses of PCSK9 expression during development, and in the adult, and
after partial hepatectomy, revealed that it is expressed in cells that have the capacity
to proliferate and differentiate. These include hepatocytes, kidney mesenchymal cells,
intestinal ileum, and colon epithelia as well as embryonic brain telencephalon neurons.5
It was also highly expressed in various tumor-derived cell lines (Figure 5).

Figure 4. In situ hybridization histochemistry of the expression of PCSK9 mRNA in an embryonic
day 17 (E17) mouse. Notice the high expression of PCSK9 in liver, small intestine, kidney and cerebellum.
The locus of the human PCSK9 gene on the small arm of chromosome 1p32 is emphasized. This pattern
of tissue expression of PCSK9 was the basis that led us to define its role in liver in cholesterol regulation.

http://www.ncbi.nlm.nih.gov/BLAST
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Figure 5. Cellular and tissue expression of PCSK9. Northern blot analysis of PCSK9 mRNA in 21 rat,
mouse, and human cell lines (A) and 17 rat tissues (B) (Sm, smooth; Sk, skeletal; d, day). The open arrow
points to the smaller testicular mRNA. The red stars denote high expression of PCSK9 in specific tumor
derived cell lines. The tissues expressing high levels of PCSK9 are boxed in. Modified from.5.

The localization of the PCSK9 gene on the short arm of chromosome 1p32, led us
to initiate a very fruitful collaboration with Catherine Boileau and Marianne Abifadel in
Paris, who were on the lookout for a gene located on chromosome 1p32-p34.1, which by
linkage analysis was thought to represent the third FH locus (FH-3) different from the
LDLR (FH-1) and its ligand apoB (FH-2). It turned out that indeed the gene coding for
PCSK9 is the one responsible for observed hypercholesterolemia phenotype observed
in two French families, with the rare gain-of-function (GOF) mutations S127R and F216L of
human PCSK9.4 For a more extensive review of the huge amount of detective work that
led to this conclusion, the reader is referred to an excellent review of the history of the
identification of PCSK9 as the third FH locus from their genetic perspective.39

In essence, the two GOF point mutations in PCSK9 that were identified in the two
French families (from Nantes and Bordeaux) were responsible for the 2-fold (F216L)
and 4-fold (S127R) increase of circulating LDLc in these FH-3 patients (Figure 6). Since
this seminal discovery, a number of rare missense GOF mutations in each of the 12
PCSK9 exons were identified, always leading to higher levels of LDLc (Figure 6). The most
damaging one is the Anglo-Saxon mutation D374Y, occurring in exon 7, first identified in
the Mormon Population in Utah,40 and later on found in England and other countries.7
The LDLc in these heterozygous patients is at least 5-fold higher than normal. The GOF
D374Y-PCSK9 causes a severe FH phenotype that is not readily reduced by statins.41
Carriers of this mutation are typically affected by CVD 10 years earlier than other FH
patients.

On the other hand, the more common loss-of-function (LOF) mutations in PCSK9
result in low levels of circulating LDLc (Figure 6).42 In fact, complete heterozygote LOF
of PCSK9 was estimated to result in an 88% reduced risk of developing cardiovascular
complications over a 15-year follow-up period.43 Another example is the R46L mutation,
which results in a partial LOF, and is associated with a 15% reduction in LDLc, and a
47% reduction in the risk of coronary heart disease.43 Amazingly, two women and one
man were identified who completely lacked PCSK9 expression, and all have similarly
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Figure 6. Schematic representation of the exon/intron structure of the PCSK9 gene and the
identified GOF and LOF mutations. The first reports of GOF (above the gene) and LOF (below the gene)
PCSK9 mutations are emphasized, as well as the countries of origin of each reported mutation. Notice
that the 3 complete LOF mutations of PCSK9 are denoted with green stars with a red border, and the 0.4
mM levels of LDLc reached.

low levels of LDLc of 0.4 mM, which is about 7–8-fold lower than normal (Figure 6).
These included: (1) an African American woman presenting compound heterozygote
PCSK9 LOF deletion/truncation mutations (4R97 + Y142X), apparently in good health;44
(2) An African woman from Zimbabwe that presented a homozygote LOF truncation
C679X;45 and (3) A French diabetic Caucasian that presents compound LOF mutations
(R104C +V114A).46 These results, and the observation that patients exhibiting LOF
PCSK9 mutations have an increased LDLc catabolic rate, 46 with apparently no obvious
deleterious effects associated with very low LDLc levels, provided compelling arguments
for developing inhibitors of PCSK9 to treat hypercholesterolemia.

THE CELLULAR BIOLOGY OF PCSK9 AND ITS TRAFFICKING
However, before doing so, it was necessary to understand the mechanism by which high
concentrations of PCSK9 or GOF mutations are associated with high LDLc levels, with
the reverse being true for LOF mutations. Indeed, epidemiological studies suggested
that plasma PCSK9 levels correlate with high LDLc levels,47–49 suggesting a causal
relationship.

Like all of the other seven proprotein convertases (with the exception of PC2 that has
its own chaperone 7B2) PCSK9 undergoes an autocatalytic cleavage of its inhibitory
prodomain at the VFAQ152↓ site in the endoplasmic reticulum (ER), resulting in tightly-
bound heterodimer of the prosegment and the rest of the mature protein, 5,50 that in this
state is proteolytically inactive.23 Such zymogen cleavage allows the protein to exit the
ER and traffic though the Golgi apparatus and is secreted within minutes (Figure 7).50
However, PCSK9 is in a class of its own, since it always remains in a tight enzymatically
inactive complex with its prodomain (Figure 8) unlike other PCSKs that lose their
prodomain following a second cleavage or dissociation of the prodomain along their
intracellular route before reaching their final destinations. Indeed, the crystal structure
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Figure 7. Biosynthesis of PCSK9 in HK293 cells. The V5-tagged PCSK9 or its active site mutant H226A
were transiently expressed in HEK293 cells. The next day the cells were pulse-labeled with [35S]Met/Cys
for 4 h. Cell extracts (C) and media (M) were immunoprecipitated with a V5 antibody and the precipitates
were resolved by SDS/PAGE on an 8% tricine gel. The migration positions of molecular mass standards
(kDa), proPCSK9, PCSK9 and the prosegment are emphasized, together with the Furin cleaved product
observed. Note that the active site mutant is neither cleaved not secreted, emphasizing the necessity of
prodomain autocatalytic cleavage for PCSK9 to exit the ER and be secreted.

Figure 8. Zymogen activation of the proprotein convertases. The various strategies used by the
convertases to get activated. It all starts in the ER where the first autocatalytic cleavage occurs. Except for
PCSK9 all the other convertases get rid of their inhibitory prodomain to become enzymatically active.

of secreted mature PCSK9 confirmed these biochemical observations and revealed the
very tight association of the prodomain with the catalytic subunit of PCSK9.51 These data
indicated that the circulating PCSK9 is enzymatically inactive due to its association with
the inhibitory prodomain.

However, the identification of GOF mutations F216L and R218S led to the
demonstration that these PCSK9 mutations are associated with the loss of the ability of
another proprotein convertase – Furin – to cleave and inactivate PCSK9 at the sequence
RFHR218↓.52,53 This results in the dissociation of the prodomain and segment 153–218,
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resulting in a truncated inactive form of PCSK9.52 This new concept suggested that
PCSK9 is subject to inactivation prior to its secretion from the liver (its main source
in the plasma). Indeed, recent mass spectrometry evidence revealed that up to 40%
of circulating PCSK9 is Furin-inactivated.54 This raises the question of the pertinence
of measuring the circulating levels of PCSK9 using a simple ELISA that recognizes
both active and inactive forms, and may explain the seemingly low level of correlation
between circulating total concentrations of PCSK9 and LDLc.48 It is expected that
the concentrations of the active form of PCSK9 would better correlate with those of
circulating LDLc.

The first indication of the mechanism underlying the observed PCSK9 regulation
of LDLc was reported by Maxwell and Breslow, when they demonstrated that PCSK9
targets the LDLR towards an intracellular degradation compartment6 We showed that this
degradation occurs in an acidic compartment, and that it involves endocytosis of the cell
surface PCSK9≡ LDLR complex into clathrin heavy chain coated early endosomes.55 It
was later shown by the group of Horton and Hobbs that the catalytic domain of PCSK9
binds the EGF-A domain of the LDLR, 56 and that the enzymatic activity of PCSK9 is not
necessary for its induced degradation of the LDLR57 Interestingly, the GOF PCSK9-D374Y
mutant was found to bind to the LDLR with a 6- to 30-fold higher affinity compared
with wild-type PCSK9, by reinforcing a hydrogen bond between PCSK9 and the EGFA
domain of the LDLR.51 In fact, it seems that the negative charge of Asp374 is the critical
negative factor, as it can be replaced by Glu374, but its replacement by uncharged or
hydrophobic residues results in similar GOF as Tyr374.58 It is now well accepted that the
bioactive heterodimeric prodomain≡ PCSK9 binds the EGF-A domain of the LDLR,59 and
the trimeric prodomain≡ PCSK9≡ LDLR complex is escorted to endosomes/lysosomes
for degradation, but that the underlying details of the trafficking mechanism remain
obscure.7 Therefore, the 3 FH genes interact with each other as PCSK9 binds both the
LDLR6 and apparently apoB60 (Figure 9).

Figure 9. Schematic representation of the incidence of FH-1, 2 and 3 mutations and a model
emphasizing the mutual binding of the LDLR, apoB and PCSK9. The tendon xanthomas seen in FH
patients are shown on the top left corner.
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However, we consistently observed that mutants of LDLR (e.g., LDLR-L339D) that
cannot be targeted to endosomes/lysosomes by extracellular PCSK9, are still degraded
intracellularly in various cell lines by co-expressed PCSK9. This led to the discovery of
an intracellular pathway of PCSK9-induced LDLR degradation that does not require
PCSK9 secretion and that drags the LDLR to lysosomes directly after exit of the trimeric
prodomain≡ PCSK9≡ LDLR complex from the trans-Golgi network into clathrin light
chain coated endosomes.61 Such a distinct intracellular pathway, while prevalent in most
cell lines transfected with wild type PCSK9 (but not its D374Y mutant), does not seem to
play a major role in the PCSK9-enhanced degradation of the LDLR in liver hepatocytes in
vivo. The reason for this discrepancy between liver and hepatocyte cell lines is still not
clear.7

Genetic and cellular evidence revealed that the phospho-tyrosine binding protein
ARH, which recognizes NPXYmotifs in cytosolic tails (CT) of membrane-bound proteins,
is required for the internalization of the LDLR-PCSK9 complex into clathrin-coated
vesicles, leading to the enhanced degradation of the complex by the extracellular
pathway62 However, the CT of the LDLR containing an NPXYmotif is not needed for the
internalization of the PCSK9≡ LDLR complex63,64, and we recently obtained evidence
that even a soluble form of the LDLR lacking its transmembrane (TM) and CT domains
(sLDLR) is still well targeted by PCSK9 for intracellular degradation. This suggests that
one or more, as yet unidentified, protein(s) (X-protein; Xp), which contains a TM and
one or more NPXYmotifs binds the cell surface PCSK9≡ LDLR complex and directs it
to endosomes/lysosomes. In that context, we recently reported that the two proposed
candidate Xps to chaperone the PCSK9≡ LDLR complex to degradation via the extracel-
lular pathway, i.e., Sortilin (SORT1) and the amyloid β-precursor-like protein 2 (APLP2),
do not physiologically regulate PCSK9 in cells and in vivo.65 Furthermore, our study
eliminated them as candidate sec24a-binding proteins which were seemingly required
for PCSK9 to exit from the ER into COP-II vesicles.66 Therefore, the mechanistic details
and the trafficking components that regulate both degradation pathways of the PCSK9≡
LDLR complex are still unknown.

INHIBITION OF PCSK9 REDUCES LDLC LEVELS & INCIDENCE OF CVD
Using animal models, it became clear that knockout of the Pcsk9 gene in mice results
in a hypocholesterolemia phenotype with an 80% reduction in LDLc,67,68 an enhanced
response to statins67, and a significant decrease in the development of atherosclerosis69
The reverse is observed in transgenic mice overexpressing the wild type form of PCSK9,69
or its D374Y GOF mutant,70 and in transgenic pigs expressing the D374Y mutant.71,72

Some other benefits that result from the loss of PCSK9 expression are the reduced
incidence of inflammation,7 sepsis,73 and tumor metastasis74 In addition, the observed
aorta and vascular calcification in FH patients was reproduced in Ldlr KO mice and
Pcsk9 KO are protected, while PCSK9 overexpression exacerbates the phenotype.75
This is in part due to an inflammatory response to the formation of cholesterol crystals
in hypercholesterolemic conditions that can be reversed by the administration of anti-
inflammatory mAbs to Interleukin-1β.76

Analysis of various reagents that modulate PCSK9 levels (Figure 10), revealed that
HNF1α77 is the strongest activator of PCSK9 transcription, while SREBP-2 upregulates
the expression of both the LDLR and PCSK9.47 The latter regulation explains why statins,
inhibitors of cholesterol synthesis, also activate the production of both PCSK9 and its
target LDLR.47 In fact, it was recently reported that some cholesterol ester transfer protein
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Figure 10. Modulators of PCSK9 function or expression. The activators are denoted with a red arrow,
whereas inhibitors of PCSK9 are on the left side of the green arrow.

(CETP) small molecule inhibitors that enhance the levels of HDL can also inhibit SREBP-2
and hence PCSK9 transcription, resulting in reduced LDLc.78 Mediterranean diet as well
as estrogens and mTOR1 all reduce the levels of PCSK9, while inflammation and high fat
or fructose rich diets79 increase the levels of PCSK9.7

However, the most powerful PCSK9 inhibitors are antibodies that prevent the binding
of extracellular (circulating) PCSK9 with the LDLR. The polyclonal antibodies isolated
in our group in 2007, 55,80 were found to be good inhibitors of the extracellular PCSK9
function on LDLR in HepG2 cells stably expressing PCSK9 (Figure 11). Other polyclonal
antibodies that have a similar inhibitory function were also reported by N. Hooper’s
group in 2009.81 The first proof of concept that a fully humanized PCSK9-mAb can
effectively inhibit its function on LDLR via an allosteric mechanism and reduce LDLc levels
in mice and monkeys was reported in 2009.82 Since then, at least three pharmaceutical
companies have developed humanized mAbs against PCSK9, evolcumab, alirocumab and
bococizumab, and all are in phase III clinical trials, of which outcomes are expected to
become public by 2018.7,83

Figure 11. Effect of affinity purified PCSK9 polyclonal antibody on LDLR levels in HepG2 cells.
Human PCSK9 (0.6 µg) was pre-incubated at neutral pH and 37 ◦C for 1 h with saline control or 5 µg of a
previously reported affinity-purified polyclonal antibody to PCSK9.55 These solutions were then incubated
with HepG2 cells for 6 h, following which the cells were suspended and immediately analyzed by FACS
for surface human LDLR levels.58 Notice that PCSK9 reduces the cell surface LDLR by >60%, and that the
PCSK9 antibody completely reverses this activity on the LDLR.
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PROPOSED STRATEGIES TO INHIBIT PCSK9 FUNCTION
Multiple studies in cells, animals and human LOF mutations revealed that PCSK9
inhibition would increase the levels of the LDLR in liver and hence reduce those of
circulating LDLc. Such a mechanism of LDLc lowering is distinct and complementary to
that of statins that inhibit cholesterol synthesis, resulting in the activation of SREBP-2
and consequently upregulating the mRNA levels of the LDLR, but also those of PCSK9
that reduces LDLR protein concentrations. Clearly, inhibition of PCSK9 would maximize
the effect of statins and result in a drastic reduction of LDLc.84 This hypothesis was
confirmed by the application of multiple inhibitory strategies discussed below. However,
the question arose whether PCSK9 inhibition should be reversible in case of unexpected
secondary effects, or should it be permanent , as two of the three persons lacking PCSK9
due to complete LOF mutations seem to be in relatively good health. However, the fact
that only a very limited number of people exhibit complete loss of PCSK9, and yet the
complete cardioprotective LOF C672X heterozygote mutation is found quite frequently in
black Africans (3.3% overall), but varied significantly among ethnic groups, ranging from
0% to 6.9%,85 begs for caution in the use of a permanent inhibition strategy.

At least four general reversible strategies were proposed to target PCSK9 in order to
reduce its circulating levels (Figure 12):

1. Neutralize plasma PCSK9 activity
mAb approach
The most advanced and proof-of-concept approach is definitively the use of inhibitory
mAbs that allosterically deform the structure of the catalytic subunit of PCSK9, thereby
preventing it from interacting with the EGF-A domain of the LDLR. The rapid progression
of the knowledge and applications of PCSK9 inhibitors took <12 years and resulted in
more than 1,300 publications (Figure 13). It is clear that the ‘injection every two-weeks’
or ‘once every month’ of an inhibitory mAb approach is the most advanced and privileged
one today,86 as Evolocumab (Amgen) and Alirocumab (Sanofi/Regeneron) have been
approved by the FDA and should be on the market by the end of 2015 or beginning of
2016. The use of the mAb Bococizumab (Pfizer)87 should follow shortly thereafter. The
subcutaneous injection of these mAbs results in 50–60% reduction of LDLc and a 30–
35% reduction in the highly atherogenic Lp(a) particles.7,86,88 The unexpected reduction

Figure 12. Various strategies to inhibit PCSK9 function or levels.
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Figure 13. Proprotein convertase subtilisin kexin 9 (PCSK9): historical perspective from its
discovery to clinical applications and the manuscripts associated with PCSK9 since 2003.
The pace of research, from PCSK9 discovery through to clinical trials, has been rapid starting from its
discovery in 2003 and the proof-of-principle that mAbs can inhibit its function in 2010, all the way to
ongoing phase III clinical trials and the final approval by the FDA in 2015. CVD indicates cardiovascular
disease; FH, familial hypercholesterolemia; GOF, gain-of-function; KO, knockout; LDL-C, low-density
lipoprotein-cholesterol; LDLR, LDL receptor; LOF, loss-of-function. Notice that >1,330 manuscripts were
published on the subject of PCSK9 since 2003, resulting in an H-index of 76.

in Lp(a) levels was recently rationalized by the fact that under supra-physiological levels
of the LDLR, such as is the case with the use of inhibitory mAbs against PCSK9, the LDLR
is the receptor of Lp(a).89

Adnectin approach
Adnectins are a family of binding proteins derived from the 10th type III domain of human
fibronectin (10Fn3), which is part of the immunoglobulin superfamily and normally
binds integrin. The 10Fn3 has the potential for broad therapeutic applications given
its structural stability, ability to be manipulated, and its abundance in the human body
and lack of immune response. Screening phage libraries for PCSK9 binders identified
and led to the engineering of a high-affinity PCSK9 binder, called BMS-962476, as a
potential alternative to mAbs. This is a∼11-kDa polypeptide conjugated to polyethylene
glycol to enhance pharmacokinetics, which binds with sub-nanomolar affinity to the
catalytic subunit of human PCSK9, thereby inhibiting its interaction with the LDLR.90
In cynomolgus monkeys a 5 mg/kg single injection of BMS-962476, led to a∼50%
reduction of LDLc. This was accompanied by the reduction of circulating free PCSK9
levels by∼6- to 7-fold over baseline, which then returned to control levels by 3 weeks,
in parallel with return to baseline of LDLc levels, likely as a consequence of the Adnectin
complex dissociating over time.90 We are awaiting the progress of this type of inhibitor in
clinical trials.
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2. Decrease PCSK9 expression
siRNA approach
One way to reversibly decrease PCSK9 expression would be to lower the levels of its
mRNA. A small interfering RNA (siRNA; Alnylam Pharmaceuticals, Inc.) clinical trial
involving siRNA-targeting PCSK9 has been evaluated in a randomized, single-blind,
placebo-controlled, phase 1 dose-escalation study in healthy adult volunteers with
serum LDLc of ≥ 3 mmol/L or higher.91 The data showed that at a dose of 0.4 mg/kg,
this relatively safe treatment resulted in a mean 70% reduction in circulating PCSK9
plasma protein and a mean 40% reduction in LDLc from baseline relative to placebo.
This siRNA approach was shown to be generally safe and well tolerated in this Phase I
study and there were no serious adverse events related to study drug administration.
Phase II clinical trials are underway. Although mAbs seem to block close to 100% of
free circulating PCSK9, the siRNA approach left≈ 30% PCSK9 in circulation, suggesting
limited efficacy of the current siRNA method. Although a direct comparison of this
approach with the mAb one is yet to be tested in humans, the efficacy of the reduction
of LDLc observed with siRNA (40%)91 is still no better than that achieved with mAbs
(50%–70%).7,86 This suggests that the intracellular pathway in liver may have a relatively
minor contribution to the overall activity of PCSK9 on LDLR, which seems to mostly act by
the extracellular pathway.

Transcriptional inhibition
PCSK9 gene expression is regulated by SREBP-2, HNF1α and other factors (Figure 10).7
Thus, it is plausible to develop small molecules that would enter the nucleus in liver
hepatocytes and decrease the transcription of the PCSK9 gene. Interestingly, Kowa
Pharmaceuticals reported that a CETP inhibitor (K-312) that raises HDL levels, and also
inhibits PCSK9 transcription and lowers LDLc levels in rabbits. In the human hepatocyte-
derived HepG2 cells, K-312 treatment decreased the active nuclear forms of SREBP-1
and SREBP-2 that regulate promoter activity of PCSK9. This suggests that K-312 may
regulate the SKI-1/S1P or S2P cleavage and generation of the active nuclear forms of
these SREBPs.11 Thus, K-312 decreases LDLc and PCSK9 levels, possibly serving as a new
oral therapy for dyslipidemia and CVD. However, the SREBP target of this inhibitor makes
it relatively non-specific for PCSK9, as the levels of other proteins regulated by SREBPs
will also be affected.

Benzofurans as modulators of CVD
Tribbles pseudokinase 1 (TRIB1) is implicated in modulating the risk of CVD.92 Active
benzofurans, as well as natural products capable of TRIB1 upregulation, also modulate
hepatic cell cholesterol metabolism by elevating the expression of LDLR mRNA and
LDLR protein, while reducing the levels of PCSK9 mRNA and secreted PCSK9 protein and
stimulating LDLc uptake.92 The effects of benzofurans are not masked by cholesterol
depletion and are independent of the SREBP-2 regulatory circuit, indicating that these
compounds represent a novel class of chemically tractable small-molecule modulators
that shift cellular lipoprotein metabolism in HepG2 cells from lipogenesis to scavenging.
Time will tell if such an approach, that is not specific for PCSK9, is nevertheless safe and
feasible clinically.

3. Block PCSK9 functional activity on the LDLR
EGF-A mimetics
Since PCSK9 interacts with the EGF-A domain of the LDLR, it is plausible that a
competitive EGF-A mimetic can act as a decoy to block the activity of extracellular PCSK9
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on the LDLR. The interaction surface of EGF-A and PCSK9 is large and flat, with the two
proteins interacting via a 530 Å2 flat contact patch between the catalytic domain of
PCSK9 and the EGF-A domain in the LDL-R.59,93 it is thus a real challenge to find a small
molecule that would inhibit LDLR binding. Nevertheless, a number of approaches using
peptidomimetics of EGF-A have been reported. Two truncated and modified versions of
the EGF-A peptide were designed and found to be active in the low µM range to inhibit
the activity of extracellular PCSK9 on the LDLR.94,95 Screens of phage-displayed peptide
libraries led to the identification and synthesis of a 13-amino acid linear peptide (Pep2-8)
as the smallest PCSK9 inhibitor known.95 However, much work is still necessary to
stabilize such structures for in vivo applications, and possibly their transformation into
orally active compounds.

Peptide mimetics of natural inhibitors of PCSK9
The search for natural inhibitors of PCSK9 led to the identification of Annexin A2 as a
candidate inhibitor of the extracellular activity of PCSK9.96,97 The inhibitory domain was
localized to be in the 70 aa N-terminal R1-repeat domain of Annexin A2, and this was
used to develop a high nM PCSK9-inhibitor that is active in cell lines.97 Interestingly,
Annexin A2 is a cytosolic protein that is secreted and meets PCSK9 in the extracellular
milieu. Recent data also revealed that the cytosolic form of Annexin A2 also reduces
PCSK9 protein levels via inhibition of its translation, likely upon binding inhibitory
motifs in the 3′ untranslated region of the PCSK9 mRNA.98 The identification of the
binding domain of cytosolic Annexin A2 to the PCSK9 mRNA may lead to the synthesis
of intracellular inhibitors of PCSK9 translation.

4. Inhibit proPCSK9 zymogen autocatalytic cleavage or secretion from cells
The precursor proPCSK9 oligomerizes in the ER in a disulfide dependent fashion,5
and the exit of the monomeric prodomain≡ PCSK9 from the ER (ultimately leading
to secretion) is dependent on the zymogen autocatalytic processing of proPCSK9 into
PCSK9 to excise the prodomain (Figure 1).5,50 It is thus plausible to identify an inhibitor,
possibly a small molecule, that would prevent PCSK9 from exiting the ER, either by
inhibiting its autocatalytic processing, or by enhancing its oligomerization. A number of
screens have been initiated to inhibit autocatalytic processing of PCSK9. Since this is
an in cis zero kinetics reaction it would be rather difficult, but not impossible, to block
it. Indeed, novel assays have been proposed to test potential inhibitors of proPCSK9
processing, and suggested that the PCSK9 active site and its adjacent residues serve
as an allosteric modulator of protein secretion, independent of its role in proteolysis,
revealing a new strategy for intracellular PCSK9 inhibition.99

At least two permanent PCSK9 inhibition strategies have been proposed:

PCSK9 vaccination
A recent report suggested the use of peptide-based anti-PCSK9 vaccines, isolated via
the generation of polyclonal high affinity and persistent antibodies that are functional
for up to one year (AFFiRiS AG, Austria).100 In mice, they are reported to be powerful
with an up to∼50% reduction of LDLc and∼30% decrease in total cholesterol. It was
suggested that this type of vaccine is a safe tool for long-term LDLc management, and
thus may represent a novel therapeutic approach for the prevention and/or treatment
of hypercholesterolemia-related CVD in humans. However, the potentially negative long
term consequences associated with this approach should not be underestimated, as it
is also apparent that the permanent lack of PCSK9 may reduce the ability of the liver to
regenerate68 and may enhance viral infections.101,102 Furthermore, the extreme rarity of
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individuals that completely lack PCSK9 is if anything, an indication of a potential counter-
selection against this event during evolution. Notwithstanding these caveats, Pfizer is
testing an experimental PCSK9 vaccine, designed to induce the body to produce its own
PCSK9 antibodies, which should enter human testing in 2016. It is reported that that, if
successful, the vaccine might eventually be an annual injection.

CRISPR-Cas9 gene silencing of PCSK9
Scientists hoping to alter the genome of their favorite organisms faced an arduous
task, which has been vastly improved by the ability to quickly destroy or edit a gene
with a new technology called CRISPR (clustered regularly interspaced short palindromic
repeat)/Cas9. Such RNA-guided endonuclease Cas9 has emerged as a versatile genome-
editing platform.103–105 In this method the Cas9 enzyme cuts DNA at a specific sequence,
determined by an accompanying bit of RNA called a guide RNA. Then, the cell’s own DNA
repair machinery typically takes over in one of two different repair modes: (1) it simply
glues the two pieces back together, but imperfectly, so the leftover scar interrupts and
disables the targeted gene; or (2) the cell can copy a nearby piece of DNA to fill in the
missing sequence. By providing their own DNA template, scientists can now induce the
cell to fill in any desired sequence, from a small mutation to a whole new gene.

A recent proof-of-principle study suggested the possibility of permanent alteration
of PCSK9 with in vivo use of CRISPR-Cas9 genome editing.106 Here the authors injected
mice with an adenovirus expressing CRISPR-Cas9 and a CRISPR guide RNA targeting
Pcsk9 in mouse liver. The data showed that in 3–4 days from the administration of the
virus, the mutagenesis rate of Pcsk9 in the liver was >50%. This resulted in decreased
plasma PCSK9 levels, increased hepatic low-density lipoprotein receptor levels, and
decreased plasma cholesterol levels (by 35–40%), similar to the total cholesterol
reduction observed in mice completely lacking PCSK9 (−40–50%).67,68

However, the size of the commonly used Cas9 (4.1 kb) from Streptococcus pyogenes
(SpCas9) limits its utility for basic research and therapeutic applications that use the
highly versatile adeno-associated virus (AAV) delivery vehicle. Recently, it was reported
smaller Cas9 orthologues from Staphylococcus aureus (SaCas9) can edit the genome
with efficiencies similar to those of SpCas9, while being more than 1 kb shorter.107 When
SaCas9 and its single guide RNA expression cassette were packaged into a single AAV
vector the authors were able to effectively target the Pcsk9 gene in mouse liver. Within
one week of injection, >40% gene modification was observed, accompanied by almost
complete absence of immunoreactive Pcsk9 in circulation and a∼50% reduction in
total cholesterol levels, without apparent liver toxicity at one to four weeks after AAV
administration.107

Obviously, both studies used either adenoviral- or AAV-induced silencing technology,
and this viral approach is not yet suitable for human patients, but the reduction of liver
PCSK9 by this technology has now been proven. Other methods of delivery of CRISPR-
Cas9 and its guide using nanoparticles might become more sophisticated to allow for
clinical trials. Furthermore, both studies were short term and were only done in mice. So,
the long term benefits and safety associated with the liver-targeted silencing PCSK9 by
this technology would have to be proven beyond doubt before it becomes widely used in
clinics.

CONCLUSONS AND FUTURE DIRECTIONS
This small review presents the many facets of PCSK9 and its biology, concentrating only
on its ability to enhance the degradation of the LDLR. However, PCSK9 has been shown to
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target other members of the LDLR-family including the VLDLR and ApoER2,108,109 and can
affect the levels of its targets in other tissues than liver, such as small intestine, pancreas
and adipose tissue.7 Much remains to be unravelled regarding the cellular trafficking of
PCSK9 together with its targeted receptors, its possible interactome web, and its binding
to other proteins. This is a very exciting period in the field of dyslipidemia, where thanks
to new PCSK9-silencing therapies, LDLc levels were lowered to unprecedented levels,
reaching almost 0.4 mM. This is good news for hypercholesterolemic patients who do
not reach target levels of LDLc with the available medications, cannot tolerate statins, or
who experience painful side effects with statins such as myalgia. Even homozygote FH-1
patients that have minimal LDLR activity can now be treated with PCSK9 mAbs with a
spectacular∼30% decrease in circulating LDLc,110 thereby giving a much better quality of
life that is less dependent on the use of bi-weekly sessions to clear LDLc from their blood
using special apheresis dialysis columns.

Although the outcomes of the various ongoing phase III clinical trials using PCSK9-
mAbs will not be known until 2018, early signs indicate that this treatment results in a
∼50% reduction in cumulative cardiovascular events within 1 year of treatment.111,112
Finally, the fact that PCSK9 is inactivated by some proteases, such as Furin,52,53 might
open new strategies to enhance this inactivation mechanism and thus lower the levels of
active PCSK9. The future will tell which strategies targeting PCSK9, other than mAbs, will
find their way in dyslipidemia and cardiology clinics throughout the world and result in
affordable and safe treatments.
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